Smartphones as Experimental Tools: Different Methods to Determine the Gravitational Acceleration in Classroom Physics by Using Everyday Devices

  • Jochen Kuhn University of Kaiserslautern
  • Patrik Vogt

Abstract

New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of smartphones as special new media devices serving as tools for conducting experiments in classroom physics and in daily life as well. In this paper, we give an overview about different methods for determining the gravitational acceleration as one of the most fundamental parameter in physics by using these easy-to-have and easy-to-use everyday tools. The theoretically backgrounds of the experiments range from the simple use of the law of gravitation to the coefficient of restitution and refer to different physical concepts (mechanics and acoustics). So each of these experiments requires different pre-conditions and it’s possible to conduct these experiments and determine this most fundamental parameter in classroom physics by completely different types of learners (high-school as well as college level).

References

Aguiar, C.E. & Laudares, F. (2003). Listening to the coefficient of restitution and the gravitational acceleration of a bouncing ball. Am. J. Phys. 71, 499–501.
Falcão, E. G. Jr., Gomes, R. A., Pereira, J. M., Coelho L. F. S. & Santos, A. C. F. (2009). Cellular phones helping to get a clearer picture of kinematics. Phys. Teach. 47, 167-168.
Glück, M. (2005): MEMS in der Mikrosystemtechnik: Aufbau, Wirkprinzipien, Herstellung und Praxiseinsatz mikroelektromechanischer Schaltungen und Sensorsysteme (translated as “MEMS in Microsystem Technology: Structure, Principles of Effects, Production and Practical Insert of Micro-Electromechanical Circuits and Sensor Systems”). Wiesbaden: Vieweg+Teubner.
Hammond, E.C. & Assefa, M. (2007). Cell phones in the classroom. Phys. Teach. 45, 312.
Kuhn, J. (2010). Authentische Aufgaben im theoretischen Rahmen von Instruktions- und Lehr-Lern- Forschung: Effektivität und Optimierung von Ankermedien für eine neue Aufgabenkultur im Physikunterricht (translated as “Authentic problems within the theoretical framework of research in learning and instruction: Effectivity and optimization of anchor media concerning a new task culture in physics education.”). Wiesbaden: Vieweg+Teubner Verlag
Kuhn, J. & Vogt, P. (2012a). Analyzing Diffraction Phenomena of Infrared Remote Controls. Phys. Teach, 50, 118-119.
Kuhn, J. & Vogt, P. (Eds.). (2012b). iPhysicsLabs. Phys. Teach, 50ff. [Column starting on February 2012].
Kuhn, J., Vogt, P. & Müller, S. (2011). Handys und Smartphones - Einsatzmöglichkeiten und Beispielexperimente im Physikunterricht (translated as “Cellphones and Smartphones – Capabilities and Examples of Experiments in Physics Classroom Education.”). PdN-PhiS 7/60, 5-11.
Pape, B.v. (2000). Fallbeschleunigung mit einem hüpfenden Ball. (translated as „Determining acceleration of free fall with superball”). PdN-PhiS 4/49, 28-32.
Schwarz, O.& Vogt, P. (2004). Akustische Messungen an springenden Bällen” (translated as “Acoustic measurements of bouncing balls”), PdN-PhiS 3/53, 22-25.
Schwarz, O., Vogt, P. & Kuhn, J. (2012). Acoustic measurements of bouncing balls and the determination of gravitational acceleration. Phys. Teach, 51 (accepted).
Schnabel, P. (2010). Elektronik-Fibel (translated as “Electronic Fibel”).Norderstedt: Books on Demand Gmbh
Sprockhoff, G. (1961). Physikalische Schulversuche, Mechanik. (translated as „Physical experiments in school, mechanics”). Munich/Düsseldorf: Oldenbourg Verlag.
Van Domelen, D. (2007). Teaching light polarization with cell phones. Phys. Teach. 45, 469.
Villa, C. (2007). Bell-Jar Demonstration Using Cell Phones. Phys. Teach. 47, 59.
Vogt, P. & Kuhn, J. (2012a). Analyzing the Free-Fall Phenomenon with a Smartphone Acceleration Sensor. Phys. Teach, 50, 182-183.
Vogt, P. & Kuhn, J. (2012b). Analyzing Pendulum Phenomena with a Smartphone Acceleration Sensor. Phys. Teach, 50, 439-440.
Vogt, P., Kuhn, J. & Müller, S. (2011). Experiments Using Cell Phones in Physics Classroom Education: The Computer Aided g-Determination. Phys. Teach, 49, 383-384.
White, J. A., Medina, A., Román F.L. & Velasco, S. (2007). A Measurement of g Listening to Falling Balls. Phys. Teach. 45, 175-177.
Published
2017-02-28
How to Cite
KUHN, Jochen; VOGT, Patrik. Smartphones as Experimental Tools: Different Methods to Determine the Gravitational Acceleration in Classroom Physics by Using Everyday Devices. European Journal of Physics Education, [S.l.], v. 4, n. 1, p. 47-58, feb. 2017. ISSN 1309-7202. Available at: <https://eu-journal.org/index.php/EJPE/article/view/81>. Date accessed: 17 may 2024.
Section
Classroom Physics