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Abstract 

Dimensional analysis is often a subject reserved for students of fluid mechanics. However, the principles of scaling and 

dimensional analysis are applicable to various physical problems, many of which can be introduced early on in a 

university physics curriculum. Here, we revisit one of the best-known examples from a first course in classic 

mechanics, namely the falling ball problem: a ball is thrown with an initial velocity and height while experiencing 

gravity and viscous drag. We treat two representative cases of drag forces, one linear and one quadratic in velocity. We 

demonstrate that the ball’s motion is governed by two dimensionless parameters: (i) a Froude number (Fr) comparing 

the ball's initial kinetic to potential energy and (ii) a drag coefficient (CD) comparing the initial drag force to the ball's 

own weight. By investigating extreme, yet simple hypothetical cases for Fr and CD, we demonstrate how students can 

grasp the role of the parameters relating the ball's initial conditions in governing several physical behaviors displayed by 

the system. Advocating early on exposure to dimensional analysis is undoubtedly beneficial in building physical 

intuition, but also it illustrates how physical systems characterized by many variables may be assimilated by reducing 

their inherent complexity. 

Keywords: Dimensional analysis; scaling; dimensionless parameters; classic mechanics; Newton’s laws.   

Introduction 

In traditional curriculums of university physics, all too rarely are students exposed to the concept of 

dimensional analysis and dimensionless parameters. Even engineering students must typically wait 

until their first exposure to a fluid mechanics course (Fox et al., 2008; Panton, 1995; Smits, 2000) to 

discover the existence of the Buckingham-Pi theorem and dimensionless parameters such as the 

ubiquitous Reynolds number. A full-scale treatment of dimensional analysis is often reserved to 

graduate-level textbooks (Bridgman, 1946; Gibbings, 2011; Szirtes, 2007). However, dimensional 

analysis is usually a simple, yet powerful tool to help gain insight into a wide variety of physical 

phenomena (Buchanan, 2010), ranging from printing and painting (Herczynski et al., 2011) to 

nature's designs of organisms (Vogel, 1998). Indeed, a first course in college physics (Giancoli, 
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2008) is rife with examples where dimensional analysis may be introduced and resulting 

dimensionless parameters deduced. Such an exercise can provide students some added insight into 

the physics governing a system, with little or no additional complexity in the algebra needed. In 

fact, nearly a century ago Lord Rayleigh (Rayleigh, 1915) outlined what he termed the principles of 

similitude through “a few examples, chosen almost at random from various fields, (that) may help 

to direct the attention of workers and teachers to the great importance of the principle.” 

In the present article, our pedagogical approach lies hence in revisiting one of the best-known 

first-year undergraduate examples of classical mechanics: namely, the falling ball problem. With 

this simple example, we hope to convey to the instructor, and ultimately his/her students, some 

insight into the power of dimensional analysis. Indeed, students will realize that the simple falling 

ball problem may be better understood by determining directly from the force balance which non-

dimensional groups govern the system's dynamics. From an experimentalist's point of view, this 

strategy is particularly valuable in an effort to decrease the inherent complexity of a multi-variable 

problem leading to prohibitively large numbers of required experiments (Bolster et al., 2011; Owen 

and Ryu, 2005). By knowing beforehand which dimensionless groups characterize a physical 

system, students can easily determine the parameters governing measurable outcomes, even prior to 

solving explicitly the characteristic differential equations. In particular, we will illustrate here one 

specific aspect that highlights the usefulness of dimensional analysis: how initial conditions (i.e. 

initial height and velocity) influence the ball's resulting trajectory. Altogether, our approach is 

intended to lead a student through the application of dimensional analysis, while discussing the 

problem physically and graphing several of the solutions illustrating the impact of each 

dimensionless number, respectively. 

A schematic illustrating the falling ball setup is shown in figure 1. Namely, a ball of mass m is 

positioned at time t=0 at a height y=ho with a downward initial velocity of magnitude |v(t=0)|=|vo|, 

and experiences the influence of the gravitational field  ⃗ acting in the negative y-direction. 

Additionally, the ball is subject to viscous resistance (i.e. drag) due to the surrounding fluid. Here, 

the fluid (e.g. air) is assumed to have a density much smaller than that of the object such that 

buoyancy effects may be entirely neglected. The drag force experienced by the ball due to air may 

take different algebraic forms and we discuss briefly two classic cases: (i) drag proportional to 

velocity (i.e. linear drag) and (ii) drag proportional to velocity squared (i.e. quadratic drag). 

Grasping the concept of scaling 

In an effort to introduce to students the power of dimensionless analysis, let us first consider for a 

moment the simplest case where the ball falls in the absence of friction. One classic question from a 

first-year physics course pertains to estimating the time (Ti) for the ball to impact the ground, if the 

object is released from rest at height ho. In such an idealized situation, the system is characterized 

by the variables ho, g and m (see Table 1). Hence, we are seeking the impact time Ti that must be 

constructed from the identified variables and their corresponding fundamental dimensions (i.e. mass 

[M], time [T] and length [L]). Since ho has dimension [L] (e.g. with S.I. units of [m]), g has 

dimensions [L/T
2
] (e.g. with S.I. units of [m/s

2
]) and m has dimension [M] (e.g. with S.I. units of

[kg]), we observe that since the only variable with dimension [M] is the mass, this variable cannot 

enter our final formula. Hence, to have an answer that has dimension [T] we must have Ti = 

(constant) ∙ (ho/g)
1/2

 (  ([L]/[ L/T
2
])

1/2 
= [T]). Note that to determine or estimate the value of the

constant either requires conducting an experiment or a detailed calculation; yet, in typical 

circumstances we expect the magnitude of this constant to be approximately 1 (i.e. O (1)). 
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Figure 1: A ball of mass m falling under the influence of gravity (  ⃗ ). The ball is thrown with a downward 

velocity of magnitude |vo| from an initial height ho and is subject to friction (k) imposed by the surrounding 

fluid (e.g. air) of viscosity µ. 

In other words, we find that the time for the ball to touch the ground is independent of its 

mass. Moreover, increasing the initial height by a factor of 4 increases the time to contact by a 

factor of 2. This simple exercise illustrates the concept of fundamental dimensions and scaling 

where we have obtained a quantitative answer without even considering a differential equation! To 

proceed further in our analysis and include additional variables (e.g. initial speed, viscous drag), we 

now turn to applying the concepts of scaling and non-dimensionalization to ordinary differential 

equations (ODEs) introduced in a first-year undergraduate physics class. 

Case I: Linear drag 

Here, we will first assume that the drag force experienced by the ball is of the form Fv = kv, where 

the velocity is given by v=dy/dt and the friction coefficient (k) resulting from the fluid's viscosity 

must have dimensions [M/T] (with S.I. units [kg/s]) such that Fv is a force (e.g. Newtons). Note that 

the linear drag form is best known to describe drag experienced by small objects (e.g. particles) in a 

viscous environment and is often referred to as Stokes' law (Batchelor, 2000) when considering 

spherical particles (i.e. k =3πµd, where µ is the fluid viscosity and d the particle diameter). In the 

language of dimensional analysis, Stokes' law is typically accurate for small values of the 

dimensionless Reynolds number (i.e. Re = ρud/µ << 1, where ρ is the fluid density and u is the 

characteristic speed of the particle), which compares the magnitude of inertial to viscous forces of 

the flow surrounding the object. 

Table 1: List of variables, their fundamental dimensions and corresponding S.I. units. 

Variable Definition Dimensions Units 

y position [L] [m] 

t time [T] [s] 

m mass [M] [kg] 

g gravitational acceleration [L/T
2
] [m/s

2
] 

ho initial height [L] [m] 

vo initial velocity [L/T] [m/s] 

k friction coefficient (linear) [M/T] [kg/s] 

or 
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friction coefficient (quadratic) [M/L] [kg/m] 

As the ball is thrown with an initial downward velocity, the drag force acts in the opposite 

direction to the ball's motion: in the chosen coordinate system Fv must act in the positive y-

direction, with vo<0. We begin by writing and rearranging the force balance for the ball falling 

along the vertical y-axis (see schematic of figure 1): 

 
   

   
                            ( ) 

 
   

   
                       ( ) 

   

   
 
 

 

  

  
                        ( ) 

where v<0 along the y-axis. The above equation is a second-order, linear ODE. While students may 

often be able to solve the homogeneous and particular solutions of equation (3), and then use the 

appropriate initial conditions to solve for the resulting integration constants, these mathematical 

steps are not necessarily synonymous with ensuring that students grasp the physical role of the 

system's parameters (and initial conditions) in governing the ODE and the resulting dynamics of 

motion. This is precisely where dimensional analysis is anticipated to help. 

To render equation (3) dimensionless requires first non-dimensionalizing the dependent and 

independent variables of the system, namely y and t. That is, we must construct scaling relationships 

for position and time by introducing the ratios 

  
 

  
             

 

  
                 ( ) 

where Y and τ are the dimensionless position and time, respectively. Here, lc and tc are often referred 

to as the characteristic length scale and time scale, and are typically constructed using the identified 

parameters of the system (Table 1). Given the dimensions of the available parameters, there is 

frequently more than one correct way to define Y and τ. Since we are specifically interested in using 

dimensional analysis to characterize the role of the initial conditions, we introduce
2
 here lc =ho and

tc = ho/|vo|. As a result, the dimensionless position is bounded between Y=1 when the ball begins at 

height ho, and Y=0 when the ball hits the ground. The expression for tc represents the time needed 

for the ball to fall a distance ho at constant speed |vo|. Inserting the dimensionless variables Y and τ 

into equation (3) yields: 

  (   )

 (        ) 
 
 

 

 (   )

 (        )
                         

2
Alternatively, one could choose for example tc = (terminal velocity)/g = m/k and lc=gtc

2
 to omit use of initial

conditions during the scaling step. However, this approach yields a characteristic dimensionless ODE that does not 

feature any dimensionless parameters (i.e. d
2
Y/dτ

2
 + dY/dτ = -1), and thus renders it difficult for students to sample the 

importance of initial conditions, and evaluate extreme scenarios, without obtaining explicitly the ODE's solution and 

solving for the integration constants. 
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All the individual terms of equation (5) are now non-dimensional and the resulting 

dimensionless ODE may be rewritten as 

  
   

   
   

  

  
                        ( )     

where we have introduced 

   
  
 

   
 
   

 

    

initial  inetic energ 

initial  otential energ 
            ( )     

   
     

  

initial drag  orce

 all s weight
                                      ( )     

The dimensionless parameter Fr is known in fluid mechanics as the Froude number, named 

after the English engineer William Froude (1810-1879) who was the first to formulate reliable laws 

for the resistance that water offers to ships and for predicting their stability. In particular, the 

numerator of Fr is proportional to the initial kinetic energy (mvo
2
) while the denominator is

proportional to the initial potential energy (mgho). In contrast, the dimensionless drag coefficient 

(CD), as defined here
3
, represents the ratio of the initial magnitude of the drag force at time t=0 (|vo|k

with dimensions [L/T] x [M/T] = [ML/T
2
]) to the ball's weight (mg). These two forces appear in the

original (dimensional) force balance. 

As noted earlier, the scaling choices introduced in equation (4) serve the specific purpose of 

illustrating the influence of the ball's initial conditions (i.e. ho and vo). It is important to emphasize, 

however, that for the simple case of a ball starting from rest (vo =0), the dimensionless parameters 

yield Fr =CD = 0 and equation (6) breaks down mathematically. That is, equation (6) is only valid 

for cases where strictly speaking vo ≠ 0 (and equall  m, g, and ho are all non-zero). Indeed, the most 

general non-dimensional ODE characterizing the ball's dynamics is d
2
Y/dτ

2
 + dY/dτ = -1 for the

specific choices
2
 of tc = m/k and lc =gm

2
/k

2
. However, in the absence of any dimensionless

parameter arising from the non-dimensionalization step, this latter ODE would require solving for 

the explicit (analytical) solution in order for students to grasp some of the underlying physics of the 

problem. With this limitation in mind, we restrict the discussion below instead to cases where vo ≠ 

0. 

One formidable outcome of the non-dimensionalization exercise leading to equation (6) lies in 

the dramatic reduction of the total number of variables the system is described by. Initially, we 

began with a dimensional system represented by 7 parameters (see Table 1). In non-dimensional 

form, the falling ball problem is now described by 4 dimensionless parameters (i.e. Y, τ, Fr, and 

CD). In particular, the coefficients Fr and CD affect the relative importance of the dimensionless 

acceleration (i.e. d
2
Y/dτ

2
) and the velocity (i.e. dY/dτ), respectively. That is, the relative importance

of the time-dependent terms may be assessed by considering the ratio 

3
 In general, the notation CD refers in classic fluid dynamics (Smits, 2000) to the drag coefficient defined as CD = 

Fv/(ρv
2
A/2), where A is a reference area (e.g. cross-sectional area of the ball). Here, we have chosen to keep the same

symbol (CD) only to emphasize to students that we are introducing a dimensionless ratio that also scales the viscous 

drag force. In the falling ball problem, however, the drag force is scaled by the ball's weight (mg) rather than by the 

force produced by the dynamic pressure (ρv
2
/2) times the area (A), as commonly used in aerodynamics. 
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  (      ⁄ )

  (   ⁄  )
                     ( )     

Equation (9) highlights that alone the dimensionless coefficients Fr and CD cannot determine 

which terms to neglect in equation (6). This property is best illustrated by considering the ball's 

acceleration. Namely, the term d
2
Y/dτ

2
 will be important even though Fr may be small

4
. This

singularity results from explicitly choosing the non-dimensionalization parameters to feature the 

initial conditions of the problem (i.e. ho and vo). As a result, there will always be a (very) short time 

where no matter how small values of Fr are taken, the second derivative term in equation (6) will be 

important
4
 in deviating the ball's trajectory from the solutions captured by the simpler first-order

ODEs (described below). However, within the limited scope of our discussion and to help students 

gain in a first step physical insight into the respective roles of Fr and CD, we will address briefly 

two simple, yet illustrative cases restricted to “extreme”' scenarios only. 

 Note that the pedagogical approach adopted here follows in spirit traditional introductions to 

dimensionless analysis in fluid dynamics at the undergraduate level (Panton, 1995; Smits, 2000). 

Namely, two well-known simplified equations arise by considering solely the magnitude of the 

Reynolds number in the dimensionless Navier-Stokes (momentum) equations of an incompressible 

flow (ρ=constant), without considering changes in the time-dependent flow terms (i.e. unsteady 

and/or convective acceleration): (i) the inviscid (µ=0) Euler equations at high Reynolds numbers 

(Re >> 1) and (ii) the viscous Stokes' equations for creeping flow (Re << 1). In analogy to such 

fluid dynamic treatments, we limit ourselves for the falling ball problem to changes in Fr and CD 

only, while changes in the time-dependent terms (i.e. d
2
Y/dτ

2
 and dY/dτ) are not considered. As a

result, two simple hypothetical cases follow: 

(i) In the first scenario, we consider the magnitude of CD to be negligible corresponding to situations 

where the initial drag force is much smaller than the ball's weight (i.e. |vo|k << mg). For such cases, 

equation (6) reduces to: 

  
   

   
                        (  )     

Students will quickly realize that the ball's position is then captured by a characteristic quadratic 

solution, since the ball must continuously accelerate under the influence of its own weight. 

Noticeably, the ball's downward speed is inversely proportional to Fr; the smaller Fr, the faster the 

ball falls and the less time needed to touch the ground (Y=0). This may be understood from figure 2, 

where profiles of Y(τ) are shown for a range of values of Fr, and the ball's speed corresponds to the 

slope of Y(τ). 

4
 In fact, the smaller Fr the larger d

2
Y/dτ

2
 at times near τ = 0. This is best understood from solving explicitly equation 

(6) given the appropriate boundary conditions: Y(τ = 0) = 1 and dY(τ = 0)/dτ = -1. Solving analytically the second-order 

linear ODE for the homogeneous and particular solutions yields Y(τ) = CD/Fr ∙ (1-1/CD) ∙ (exp(-CD/Fr ∙ τ) -1/CD) + (1- τ 

/CD). In turn, at τ = 0 the second derivative is given by d
2
Y(τ = 0)/dτ

2
 = CD/Fr ∙ (1-1/CD). As Fr→0, the term d

2
Y(τ =

0)/dτ will become increasingly large for a fixed value of CD. 
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Figure 2: Non-dimensional trajectories of the falling ball for scenarios when the dimensionless drag 

coefficient is negligible (CD << 1 for linear drag, and cd << 1 for quadratic drag). The dimensionless 

Froude number (Fr) controls the ball’s parabolic trajectory and its resulting speed since (linear or 

quadratic) drag is negligible. 

(ii) In the second scenario, we consider instead the case where Fr is negligible. For instance, one can 

think of the extreme situation where the magnitude of ho is dramatically increased compared to fixed 

values of |vo| and g. As a result,  equation (6) reduces to: 

  
  

  
                        (  )     

Mathematically, the equation above yields a constant speed, namely dY/dτ = V = -1/CD = -mg/|vo|k. 

This dimensionless speed may be best understood by realizing that it corresponds to the ratio of the 

ball's terminal velocity to initial velocity (i.e. -|vt|/|vo|=-(mg/k)/|vo|), where |vt| is determined by 

solving equation (3) under steady-state conditions (i.e. when acceleration is zero and viscous forces 

balance gravitational forces). Students will immediately grasp that the ball's position is then 

captured by a characteristic linear profile upon integrating equation (11). Examples of such profiles 

are shown in figure 3 for a range of values of CD. Physically, one can think of the following 

scenario: if the ball's initial position is very high, the relative distance needed for the ball to reach 

its steady-state velocity (V) is small compared to the total distance (ho) the ball falls. 



         European J of Physics Education        Vol.4 Issue 2 2013  Sznitman et al. 

51 

Figure 3: Non-dimensional trajectories of the falling ball for scenarios when Fr << 1. The ball reaches 

quasi-instantly a constant steady-state speed V = -1/CD. Both linear and quadratic drag cases illustrate 

qualitatively identical profiles since V is inversely proportional to CD and cd, respectively. 

Case II: quadratic drag 

Let us now investigate briefly the effects of the drag force when it is instead proportional to velocity 

squared, and thus takes the form Fv = kv
2
 (note that k now has dimensions [M/L] and S.I. units

[kg/m]). This formulation of drag (i.e. the so-called drag equation) describes objects typically 

moving through fluids at relatively large velocities (Batchelor, 2000), which corresponds to large 

values of the Reynolds number (Re > 2000). Within the frame of our discussion, the main question 

lies here in answering how the quadratic drag formulation will affect the resulting dimensionless 

parameters governing the ball's motion. We begin by writing explicitly the modified force balance: 

 
   

   
  (

  

  
)
 

                          

   

   
 
 

 
(
  

  
)
 

                   (  ) 

Since the expression for drag is now quadratic in velocity, the drag force (Fv) has a positive 

sign, opposing downward motion due to gravity. Rendering the above equation non-dimensional, 

we introduce the same scaling relationships for the dimensionless position (Y) and time (τ) as 

chosen for the linear drag scenario. Namely, the characteristic length (lc=ho) and time (tc = ho/|vo|) 

scales remain unchanged since the initial conditions are identical to those for linear drag. 

Substituting for Y and τ in equation (12) yields: 
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(
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   (
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               (  )      

where the drag coefficient now takes the form 

   
  
  

  
                                          (  )      

Here, we have introduced for clarity the symbol cd to differentiate between the expressions in 

equations (8) and (14). In analogy to our earlier results (equation 9), the coefficients Fr and cd 

influence the relative importance of the acceleration and the velocity in equation (13), respectively. 

Notice that the Froude number is unchanged from the linear drag form since Fr is unrelated to the 

expression for viscous drag. However, the dimensionless drag coefficient (cd) is slightly modified 

since the ball's initial drag force is now vo
2
k, following the modified dimensions of k for quadratic

drag (see Table 1). In turn, the ball's terminal velocity is now expressed as |vt| = (mg/k)
1/2

, upon

solving equation (13) under steady-state conditions. 

Following the same strategy highlighted for the linear drag case, we can obtain some physical 

intuition into the modified dynamics of the ball under quadratic drag by limiting ourselves again to 

two extreme, yet simple situations: 

(i) For scenarios where cd is negligible (i.e. vo
2
k << mg), equation (13) falls back to

equation (10) introduced for linear drag. In this hypothetical case when Fr has non-zero 

values (i.e. vo ≠ 0), cd = 0 will occur when viscous drag is negligible (i.e. k → 0). As a 

result, the ball simply accelerates under its own weight with the well-known parabolic 

solution discussed earlier (see figure 2). 

(ii) If instead Fr is negligible as discussed for linear drag (e.g. the extreme case where ho is 

dramatically increased relative to |vo| and g), equation (13) reduces to: 

  (
  

  
)
 

              (  )      

This characteristic equation is straightforward to grasp and students will recognize the 

linear solution Y(τ) = 1- cd
-1/2

τ, recalling that dY/dτ <0. In such case, the ball's

acceleration is negligible and the ball reaches quasi-instantly its dimensionless steady-

state velocity (i.e. |vt|/|vo| = (mg/k)
1/2

/|vo|). Hence, the ball's trajectory will follow

qualitatively the same profiles illustrated for linear drag (see figure 3). 

Conclusions 

The analysis described above serves a dual purpose: on the one hand, addressing the classic falling 

ball problem through dimensional analysis is helpful for students to assimilate physical concepts. 

Conversely, the concept of dimensional analysis itself may be introduced in a straightforward 

fashion through the falling ball problem, with little or no added complexity in the mathematics 



         European J of Physics Education        Vol.4 Issue 2 2013  Sznitman et al. 

53 

handled. The rational for introducing dimensional analysis at an early stage in the curriculum of 

physics and engineering students has some important advantages. To begin, dimensionless 

parameters provide insight into the physical mechanisms governing a dynamic system without 

explicit knowledge of the solution to the characteristic ODEs. In addition, faced with the same 

mathematical tools needed to solve the dimensional case (i.e. solving ODEs), the dimensionless 

treatment of the problem captures at a glance a number of extreme cases highlighting which 

variables of a system are critical to consider. While these simple scenarios are often unable to 

capture the entire range of dynamics the system can display, they are nevertheless paramount in 

hel ing students  uild  h sical intuition and inciting them to carr  out in a  irst ste  “ ac  o  the 

envelo e” calculations. 

Overall, our discussion advocates more use of dimensional analysis in general introductory 

university/college physics classes. It is often a pity to have to wait until a second- or third-year 

specialized undergraduate fluid mechanics course to discover the existence of dimensionless 

parameters and the advantages of treating physical problems in dimensionless form. In particular, 

experimentalists, whether they are engineers or physicists, can instantly appreciate the power of 

dimensional analysis in illustrating the minimal necessary experiments needed to capture the 

dynamics of a system. 
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