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Abstract 

Due to progress in nanotechnology high-quality quantum wires can nowadays be fabricated. The behavior of particles in 

one dimension differs significantly from that in three-dimensional (3D) systems, yet the physics of such low-

dimensional systems is generally not very well represented in standard undergraduate or graduate curricula. For 

instance, the Fermi liquid paradigm, working well for electrons in 3D systems, breaks down in 1D and has to be 

replaced by the Tomonaga-Luttinger liquid (TLL) description. However, most of the introductory papers on the TLL 

restrict themselves to a summary of results to be compared with experiments, while review papers are often fraught with 

technical details only accessible to the theorist. The present paper provides an elementary discussion of some 

phenomena distinguishing quantum wires and quasi-one-dimensional systems from their 3D counterparts targeting 

experimentalists and graduate students. It aims to convey the basic ideas of TLL theory and to relate it to alternative 

phases, such as charge and spin density waves. The important role of fluctuations in quasi-1D systems is pointed out 

and the connection is made to the problem of high-Tc superconductivity. The discussion is kept on a level, which should 

be accessible with a basic knowledge of quantum mechanics. 

Keywords: Luttinger liquids, density waves, spin-charge separation, high-Tc superconductivity. 

 

Preamble: Use in Classroom 

With the rapid development of nano-science and technology in recent years dimensionally 

constrained materials are becoming commonplace in both, basic science and also industrial 

application. It is therefore desirable to convey the essentials of the theory of low-dimensional 

systems not only to the students of theoretical physics – for which excellent reviews and books are 

available – but also to experimentalists, graduate students of physics and of materials science.   

The present text specifically addresses one-dimensional systems and is intended for students who 

have already a basic education in quantum mechanics. It is assumed that they have been confronted 

with creation and annihilation operators for instance in the discussion of the harmonic oscillator. 

Furthermore, they should have a basic knowledge of the Fourier transform formalism. Armed with 

these tools they should be able to follow the discussion in the introduction and the basic theory of 

Luttinger liquids up to section III. The one major emission in this discussion is the proper 

introduction of the fields  x  and  x . This is associated with some technicalities, which at 

least for a first reading can be omitted. As always in this context, the technical details can be found 

in Giamarchi (2004). Here they are avoided as much as possible in order not to obscure the view 

onto the general concept. 

The subsequent two sections address the spin dynamics in Luttinger liquids. These chapters 

are predominantly intended for experimentalists. They are of particular interest for angle-resolved 

photoemission spectroscopy (ARPES) on (quasi)-one-dimensional systems. To make optimal use of 

these chapters it is advisable to study e.g. chapter 33 in Ashcroft & Mermin (1987) or chapter 16 in 

Kittel (2005) in advance.  The aim of the discussion of spin dynamics in the present paper is to 

provide an intuitive understanding of the many-body interactions shaping the spectral function of 

Luttinger liquids.  
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The next chapter (“Interactions”) is a phenomenological description of effects occurring if 

electron-electron and electron-phonon interactions are turned on. As such, it can be used in an 

advanced solid-state course, which introduces correlated systems.  Particular emphasis is given to a 

qualitative description of the 2kF interaction giving rise to charge and spin density instabilities. 

Finally, a special chapter is devoted to fluctuations, since fluctuations are prominent in low-

dimensional systems. As antiferromagnetic, charge density wave and orbital order fluctuations are 

nowadays central to the discussion of the unconventional superconductivity, they should be briefly 

discussed in every advanced solid state course. 

 

Introduction 

Life in one dimension can be rather annoying, as most of us have experienced on a Friday afternoon 

while being stuck in a traffic jam on a highway. With no chance of evading sideways or, as some 

might wish, by taking off into the third dimension, everybody in the file is affected by a single event 

clogging the lane. So what could provide the motivation to deliberately abandon the degrees of 

freedom offered by higher-dimensional space and engage in the physics of one-dimensional (1D) 

systems? 

Quite often this question is answered by reference to Moore’s law. Extrapolating the present 

trend towards ever smaller structures in semiconductor industry one can estimate that even within 

the present decade the cross section of interconnects in integrated circuits should shrink to below 1 

nm, i.e. almost atomic dimensions. However, this vision is not likely to come true for precisely the 

reason mentioned above: There is no fault tolerance in 1D systems in the sense that any single point 

defect radically changes the properties and the performance. Thus, reducing the critical dimension 

of interconnects to the extent of creating 1D or quasi-1D systems would presumably increase the 

rejection rate to economically unacceptable levels. 

Let’s set aside for the moment questions of large-scale production and economic feasibility. 

What is intriguing in 1D systems is the absence of efficient screening which results in long-range 

interactions, strong correlation and the break-down of the independent particle approximation in 

favor of a strong collective response to external perturbations. As a consequence, the phase diagram 

of quasi-1D systems is very rich and the competing order parameters in synergy with the low-

dimensionality give rise to an abundance of exotic properties (see Fig. 1). The term phase diagram 

in the present context has to be used with caution, since, due to competing interactions; spatio-

temporal fluctuations are common in these systems. In fact, it is widely believed that 

unconventional superconductivity is intimately correlated to anti-ferromagnetic fluctuations. One 

should not be surprised to encounter high-Tc superconductivity in a discussion of quasi-1D systems, 

although the most prominent representatives, namely the cuprates and the Fe pnictides, are layered 

compounds, hence seemingly 2D materials. At this stage we restrict ourselves to mentioning the 

enigmatic striped phase of the cuprates (Zaanen, 2006) and, similarly, the recent observation of 

nematicity in the Fe pnictides (Chu et al., 2010; Dusza et al., 2011) in order to justify the inclusion 

of these materials into the present discussion. Let’s return now to the question of technological 

relevance. High-Tc superconductivity has been mentioned, but various magnetically ordered phases 

- and the option to switch between them - are no less attractive features of quasi-1D systems. As 

outlined above, nearly degenerate phases promote quasi-critical fluctuations in a wide range of 

parameter space. Quasi-critical fluctuations in turn are associated with maxima in the response 

function or susceptibility. Since the susceptibility governs the materials response to external 

perturbations, quasi-1D systems can be tuned to exhibit technologically interesting switching 

properties. Presumably, applications within the near future will be predominantly related to 

superconductivity, to spintronics and to chemical-switching devices. They will very likely 

incorporate self-assembled quasi-1D materials rather than single, isolated 1D chains. This ensures a 

certain tolerance to statistically occurring defects, although their influence is definitely more 

important here than in higher-dimensional materials.  
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Fig. 1: Schematic phase diagram of quasi-1D organic conductors. Adapted from Bourbonnais 
(2000). 

 

In the following we shall briefly consider the properties of 1D or quasi-1D systems with 

particular emphasis on the phase diagram. The discussion aims on an intuitive understanding of the 

most salient features. Thus the present article is intended as an introduction for pedestrians to the 

physics in one dimension.  

In section II we introduce the concept of a Tomonaga-Luttinger liquid (TLL) as opposed to 

the more familiar Fermi liquid paradigm. The formal analogy to the Hamiltonian of a vibrating 

string is made to emphasize the collective character of the low-energy excitations. In section III the 

ground state of the 1D spin system is discussed by mapping the spin chain onto a spinless Fermion 

system. In section IV the results of section III are used to provide an intuitive interpretation of 

angle-resolved photoemission spectra from 1D systems (quantum wires). Section V addresses 

electronic interactions in 1D systems and the resulting phase diagram. The Luttinger liquid regime 

is put into the broader context of various density wave and superconducting phases. In section VI 

follows a brief introduction into the concept of charge density waves. Section VII deals with 

fluctuations that is a very prominent topic not only for 1D systems but also in the physics of high-Tc 

superconductivity.  The paper concludes with a short outlook concerning the role of the 

dimensionality and a few remarks for the use of the present material in physics, physical chemistry 

and materials science classes. 

 

Tomonaga-Luttinger Liquid 

Intuitively, it is clear that the quasi-particle concept of Fermi liquid theory cannot hold in 1D 

systems. As shown in Fig. 2, one cannot excite, remove, or add a particle without perturbing the 

whole chain of particles in a fundamental way. The mathematical treatment of low-energy 

excitations in the 1D system is based on the introduction of a linearized dispersion extending to 

infinite negative energies as indicated in Fig. 3. (Giamarchi, 2004; Schönhammer, 2002) This 

seemingly unphysical model is justified, if one is interested only in the physics of low-energy 

excitations with the ground state as reference. Adding high-binding-energy states to the system, 

which remain unaffected in the low-energy excitations under consideration, does not change the 

physics. 
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Fig. 2: Excitations of the charge and spin degree of freedom in a linear chain upon removal of 
a particle. 

 

The linear dispersion implies a constant density of states (DOS). For the low-energy 

excitations only the DOS around the Fermi level is relevant, hence the somewhat brutal 

assumptions about the DOS far below EF will not affect the low-energy physics, but simplify the 

mathematics considerably. The dispersion relation is written with respect to Fermi energy and 

Fermi wave vector as reference levels for energy and momentum, respectively: 

 e
R ,L

= u
F

±k - k
F( )  (1) 

 

 

 

Fig. 3: (a) Linear approximation of the dispersion underlying the Luttinger-Liquid description of 1D 

systems. The model dispersion is chosen so as to approximate the real dispersion in the vicinity of EF , while 

it becomes totally unrealistic at higher binding energies. This, however, is irrelevant, as long as only low-
energy excitations are considered. (b) Due to the linear dispersion, all excitations in a 1D system with wave 

vector q  belong to the same energy 
q

E . This is not the case in a 2D system, where the wave vector q  can 

connect points on either side of the Fermi surface with different energy separation. The shaded area 

symbolizes the filled part of a (parabolic) 2D band. Circles are iso-energetic contour lines, the dashed circle 

corresponds to the Fermi energy. 

 

Here R and L refer to right moving ( 0k  ) and left moving ( 0k  ) particles. 
1

F

dE

dk
   is the 

Fermi velocity. Below, we will set 1 , as customary. Next, density fluctuation operators 

   ,
R L

x x   and    ,
R L

q q  are introduced, which characterize the density of right and left 

moving Fermions relative to the ground state. For instance,  

   x xx c c  †
 (2) 
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with †

x xc c being the particle number operator at position x . Taking the Fourier transform of the 

creation and annihilation operators one obtains 

  
1 i k k x

k k

k k

x e c c 


 ( ') †

'

, '

 (3) 

with  the normalization volume. Defining 'k k q  one arrives at 

  
1

iqx

k q k

k q

x e c c





 †

,

 (4) 

 

 

 

 Therefore the density operators in reciprocal space can be written for instance as: 
 

   †

0
R k k q

k

q c c




   (5) 

with 
†

k
c  creating a particle in state k and 

k q
c


annihilating a particle in state k-q which increases the 

total momentum of the system by q.  ,R L
q are density fluctuations with momentum vector q and, 

since they contain two Fermion operators, are bosonic (they create pairs of Fermions – particle and 

hole – with opposite spins). In a one-dimensional system with linear dispersion all particle-hole 

excitations with the same wave-vector q  have the same energy (see Fig. 3b). Therefore, the density 

fluctuations as defined in eqn. (5) are Eigenstates of the Hamiltonian 

 

    0 0
q

H q E q   (6) 

 where 0 is the many-particle ground state. These states obviously involve collective oscillations in 

the chain with wave-vector q . Actually, these are the only low-energy excitations existing in the 1D 

system. The Coulomb interaction in the system can be written as  

 

      
1

' ' '
2

V V x x x x dxdx    (7) 

or in terms of the Fourier transform (see appendix A in Giamarchi (2004)): 

 

   † †

' '
, ',

1

2
k q k q k k

k k q

V V q c c c c
L

 
   (8) 

This is true up to an additive term, which contains the total particle number and can be 

interpreted as the chemical potential. Thus the particle interactions, while being quartic in terms of 

the Fermion operators, can be expressed as a bilinear function of the density operators. The same 

applies to the kinetic energy. Defining appropriately normalized Bosonic operators and exploiting 

the commutator relationships one arrives at a Hamiltonian 

 

      
2 21

2

u
H uK x x dx

K




 
     

 
 (9) 

Here 

  

      R L
x x x         (10) 
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i.e. the sum of left and right moving particles at point x or, equivalently, the 0q   part of the 

density fluctuations at point x .  

      R L
x x x         (11) 

is the difference between left and right moving particles at point x  and hence proportional to the 

current operator. For a more detailed discussion of the field  x see Giamarchi (2004). u  and K

can be interpreted by analogy to a vibrating string. Invoking the continuity equation 

 

 0j
t


  


 (12) 

one obtains  

 

 
1

j
t


 


 (13) 

which in 1D can be straightforwardly integrated to yield 

 

 
1

j
t





 (14) 

With the definition of the current operator 

 

  
1

j uK x


   (15) 

the Hamiltonian can be written as 

 

 

2 2

1

2

u
H dx

t K x

     
      

      
 (16) 

Thus the Hamiltonian (9) is analogous to the Hamiltonian of an elastic string 

 

 

2 2 2 2

21

2 2

y y y y
H T dx c dx

t x t x



             

                              
 (17) 

Here, y is the amplitude, T  is the Elastic modulus of the string and c T  is the sound 

velocity in the string. Accordingly, 1T K is a measure of the “stiffness” and 1 u   a 

measure of the effective mass. Actually, K is defined as a dimensionless constant specifying the 

interaction ( 1K  : attraction, 1K  : repulsion; interactions will be discussed further below) and u 

has the dimension of a velocity (remember that the model is based on a linearized dispersion). The 

analogy with the string brings out the collective character of the low-energy excitations in the TLL 

model, i.e. collective Fermion density fluctuations. Intuitively it is clear that a single particle 

excitation cannot survive in the system, since the one-dimensionality forces immediate transfer of 

momentum to the neighbors and coherent spreading throughout the system.  Another interesting 

property follows from the fact that  x and  1 x  are canonically conjugate variables. The 

non-zero commutator implies quantum fluctuations in the field  x and therefore in the density.     

Finally, we note an important difference between a solid in higher dimension and in 1D: For 

D > 1 a solid may be characterized by the presence of long-wavelength transverse modes, which are 

absent in a liquid. In 1D, however, transverse modes are forbidden, hence the difference between 

solid and liquid is gone. 
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So far we have neglected the spin degree of freedom. In principle one can carry out the above 

considerations for each spin species separately. However, interactions couple the excitations in 

separate spin channels. A diagonalized Hamiltonian can be obtained, if new variables are defined: 

 

      

      

1

2

1

2

x x x

x x x

  

  

 

 

 

 

 (18) 

  

This leads to separate  and   as well as  and qs
fields. Accordingly, the Hamiltonian 

separates into a charge and a spin part 
 

 H H H    (19) 

  
Fig. 4: Schematic illustration of spin-charge separation in a 1D chain. Removal of a particle causes 
excitations in both, the spin and the charge channel. The two excitations can travel along the chain 

with different velocities. 

 

The charge part is the same as in eq. (9), except with modified u and K . The spin part contains 

the quadratic Hamiltonian (9) 
0H with u and K plus an additional term 

 Hs =H s

0 +
2g

1̂

2pa( )
2
cos 2 2Fs( )ò dx  (20)  

 

1g   is the matrix element for a scattering process involving two particles at ± Fk with opposite spin 

and a momentum transfer of  and will be discussed in more detail below. This second term 

favors a  minimizing the cosine term, i.e. a static, ordered field. The term competes with the first, 

quadratic part of the Hamiltonian, which enforces a fluctuating field  . Since the spin and the 

charge part of the Hamiltonian can be separated, one speaks of spin-charge separation in TLLs. For 

the interaction-free case, however, vFu u   (Fermi velocity) and 1K K   . In this case spin 

and charge excitations travel with the same velocity and no separation is observed. If interactions 

are switched on, the velocities are renormalized and spin and charge excitations can separate. This 

is illustrated in Fig. 4.  

 

The Ground state of the Spin System 
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The alert reader may notice a certain discrepancy between Fig. 2, where removal of an electron is 

(correctly) depicted as a collective excitation in the charge and the spin channel, while Fig. 4 shows 

two localised excitations in order to clearly illustrate the concept of spin-charge separation. In the 

following we shall briefly outline the nature of the ground and excited state in the spin system in 

order to obtain a more realistic picture. To this end we consider a one-dimensional spin chain in the 

so-called xxz model: 

 

 

 

1 1 1 1

1 1 1
2

x x y y z z

j j xy j j j j z j j

j j j

xy z z

j j j j z j j

j j

H J S S S S J S S

J
S S S S J S S

   

   

  

    

  

  

 

J S S

 (21) 

x y zS S S, , are the Pauli spin matrices, x yS S iS   , j is the site index along the chain and J

denotes the exchange interaction. It is assumed to be isotropic in xy, hence we can write xyJ J and 

zJ J  . Furthermore we assume a local antiferromagnetic interaction, i.e. 0J   for nearest 

neighbor sites and 0J   for all larger distances. S  , S  are creation and annihilation operators, 

respectively, in the sense that S  applied to an eigenstate S of zS increases (reduces) the spin 

component in z direction by one unit: 

  1zS S S S S S    (22) 

 

Accordingly, the first part of the Hamiltonian describes the propagation of spin waves from site j to 

site 1j  and vice versa, i.e. the kinetic energy, while the second part contains the nearest neighbor 

interaction (see the discussion of magnons in solid state textbooks (Ashcroft & Mermin, 1987; 

Kittel, 2005)). For 1z xyJ J  the second part enforces antiferromagnetic order and the system 

adopts an Ising antiferromagnetic phase. Similarly, for 1z xyJ J   , the system is in an Ising 

ferromagnetic phase.  At 1z xyJ J    an isotropic Heisenberg (anti)Ferro magnet is obtained. 

1z xyJ J   corresponds to the TLL regime. The formal treatment of the spin chain is provided in 

Giamarchi (2004), chap. 6 . A discussion and pictorial representation of spin waves is given by 

Keffer, Kaplan & Yafet (1953). Here we take a shortcut in order to obtain more information about 

the ground state and the lowest excitations. To this end we map the spin chain onto a spinless 

Fermion or hard-core Boson chain by interpreting the eigenvalue S of 
z

iS as occupation number. 

Every lattice site i  with 1 2S  is considered to be occupied, while 1 2S   corresponds to an 

empty lattice site. Furthermore, we note that every lattice site can carry only a spin 1 2 , so double 

occupancy is forbidden. With these conventions the spin-chain Hamiltonian can be translated into a 

spinless-Fermion Hamiltonian: 

  1 1 1

1 1

2 2
j j j j j j

j j

H t c c h c V c c c c  

  
      

  
 † † †.  (23) 

 

Here, 2xyt J  and zV J . The operator 1j jc c

†  corresponds to a particle hopping from site j to 

site 1j  , j jc c† is the particle number operator as usual. This Hamiltonian is almost identical to a 

conventional spinless-Fermion Hamiltonian with nearest-neighbor interaction apart from the sign 

change in the kinetic energy term. The solution for the kinetic energy is thus  

 

    kin xyk J ka  cos  (24) 
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Fig. 5: Band structure of the spinon band (24) as obtained from mapping the spin Hamiltonian (21) 
onto a spinless-Fermion Hamiltonian (23). In the antiferromagnetic case the band is half-filled. Note 

that the actual bandwidth is not 2
xy

J but 
xy

J  

 

   

The interaction part adds a constant, which for the present purpose is neglected in the TLL 

regime 1z xyJ J  . Since in the ground state we have 2N particles (spin up sites) in our spin chain, 

the “spinon” band eq. (24) is half occupied (full occupation corresponds to the ferromagnetic case). 

Consequently we obtain for the ground state the situation shown in Fig. 5. It is characterized by a 

superposition of spin waves with k vectors ranging from 2 3 2k   . Accordingly, the spins are 

constantly fluctuating and the ground state is spin-isotropic (in contrast for instance to the 

antiferromagnetic Ising model). Armed with this result we can now at least qualitatively understand 

the spectral function of a TLL as measured by UV photoemission. 

 

Qualitative Interpretation of Photoemission Spectra 

 

Fig. 4 illustrates how a photo-hole can decay into two separate quasi-particles (or topological 

defects) travelling independently along an antiferromagnetic chain. This complicates the 

interpretation of PE spectra, since energy and momentum is now distributed among three entities: 

the outgoing photoelectron, the holon and the spin excitation. A qualitative interpretation of the 

photoemission spectrum has been proposed by Maekawa & Tohyama (2001). In order to understand 

the kinetics of the holon we consider the Hubbard model for a half-filled band. Here, 

antiferromagnetic ordering and a tight-binding type band structure are obtained as indicated in Fig. 

6. The lower Hubbard band is completely occupied. The band structure of the holon corresponds to 

that of a hole placed into this otherwise filled band. It is the negative replica, i.e. the holon has the 

lowest energy at k a (where it costs the least energy to remove an electron) and the maximum 

energy at 0;2k a .   
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Fig. 6:  Band structure obtained from a Hubbard model with half-filling and 1U t . The lower 

Hubbard band is completely occupied. 

 

Next we address the spin excitation. The photoelectron carries away a spin from the system. 

This is equivalent with removing a spinless Fermion from our spinless-Fermion chain eqn.  (23). In 

other words, a hole is created in the spinon band (24) (annihilation of a spinon).  To create the 

lowest energy excitation we can annihilate a spinon at 3 2k a . The photo hole has therefore the 

momentum 3 2 2ph holon spinonk k k a a a        . If holonk is kept constant and spinonk is reduced 

to a , one obtains the spinon branch. The actual total bandwidth of the spinon band obtained in the 

exact calculation is xyJ  in contrast to 2 xyJ suggested by our qualitative reasoning above 

(Cloizeaux and Pearson, 1962). With .spinonk const and holonk being varied one obtains the holon 

branch in the photoemission spectrum. Here the total bandwidth is the tight binding result 4t

obtained for 0U t  . Finally, noting that the photoelectron momentum phe
k k   one obtains the 

schematic dispersion plot shown in Fig. 7.  A comparison between actual photoemission 

measurements and a calculated spectral distribution can be found for instance in Kim et al. (2006). 

In concluding this paragraph we note that the k integrated density of states for the spin isotropic 

case ( 1K  ) can be written (Voit, 2001; Schönhammer, 2002) as 

 

    11 1

4 2
K K

Fn    
 

   (25) 

 

For an experimental test see Blumenstein et al. (2011) and references cited therein. Next, we take a 

closer look at the possible interactions in the TLL model. 
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Fig. 7: Schematic illustration of a photoemission spectrum in case of spin-charge separation. The 

spinon and holon bandwidth scale with J and t, respectively. Spinon and holon dispersion delineate 
the photoemission intensity distribution. Within these limits the latter forms a continuum, since energy 

and momentum can be distributed between the two excitations. After Maekawa & Tohyama (2001). 

 

Interactions 

 

We start with expression (8) for the particle-particle (or, more appropriately, density-density) 

interactions in a one-dimensional chain.  The interaction is written in terms of particle removal from 

states k , 'k and particle creation in states k q , 'k q . In other words it can be interpreted as a sum 

over scattering events with momentum exchange q. These scattering processes mix k q states into 

k states and vice versa. In calculating the amplitude of the states being mixed in, the energy 

difference between initial and final state appears in the denominator as a weighting factor. In the 

present case this means that those terms will dominate the interactions, for which the energy 

difference between ,k k q and ', 'k k q or , 'k k q and ',k k q goes to zero. This is the case, if both 

states lie at the Fermi level, i.e. , ' Fk k k  . The corresponding processes are illustrated in Fig. 8. 

The interaction matrix elements resulting from these processes are denoted ig
 

for historical 

reasons. Consequently, the exploration of the ensuing phase diagrams has become known as “g-

ology”. It is discussed in several books and reviews, e.g. Giamarchi (2004), Grüner (1994), Sólyom 

(1979), Jérome & Schulz (2002). Here we briefly review a few aspects of particular interest for the 

experiment. 
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Fig. 8: Left: Low-energy scattering processes with momentum conservation in 1D. Right: 

Diagrammatic representation of the scattering processes. Solid lines signify right moving, dotted lines 
left moving particles. Adapted from Giamarchi (2004). 

 

Interaction g4 is a momentum exchange among particles moving in the same direction 

(forward scattering: both particles retain their direction), while g2 describes forward scattering 

between particles moving in opposite direction. In both cases the momentum exchange is close to 

zero and the resulting Fourier coefficient  V q  belongs to an inter-action potential with  . g1 

involves a momentum exchange close to 2 Fk , which implies that the scattered particles reverse 

their direction (backward scattering). For spinless particles g1 and g2 are identical, since in this case 

the particles cannot be distinguished. If particles with spin are considered, 1g   appears as an extra 

term in the spin part of the interacting Hamiltonian (20) since here the spin is exchanged between 

left and right moving particles and there is no analogous interaction in the charge Hamiltonian. We 

omit here process 3g , which appears for exact half filling, involves a reciprocal lattice vector 

exchange and results in a 4 Fk interaction. 
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Fig. 9: In a CDW spin-up and spin-down charge densities are in phase.  The charge density is 

modulated, the spin density is not. In contrast, if spin-up and spin-down charge densities are offset by 
180°, the charge density is constant and the spin density is modulated which results in a SDW. 

 

If Coulomb repulsion dominates, 2g and 4g are positive. 4g renormalizes the velocities ,u u
 

while 2g  shifts the weights between the terms   and   in the Hamiltonian (9). For 
2

0g  ,

1K   and charge or spin density fluctuations prevail.  

The TLL is a paramagnetic metal. For 2 0g  , i.e. attractive interaction between particles from 

opposite parts of the Fermi surface, one obtains 1K   and the system exhibits an instability 

towards the superconducting phase. If 
1

g  increases in eqn. (20), this term will eventually force 




into the minima (or maxima) of  cos 2 2


 , depending on the sign of 
1

g . Accordingly one may 

have two types of excitation, i.e. magnon-like oscillations of the spin density around the minima of 

the cos term or soliton-type jumps within the chain from one minimum to the other. Both types of 

excitations are gapped, hence in this case the Luttinger-liquid is no longer a paramagnetic metal. 

Such systems are referred to as Luther-Emery liquids.  

For 
1

0g

 one has spin density wave and charge density wave correlations. In a spin density wave 

(SDW) the charge density modulation for 

and 


exhibits a phase difference of  , so that the 

total charge density remains uniform, while the spin density oscillates as shown in Fig. 9. In fact, 

the field 
 determines the offset between the modulations:  

 

 
   

   

cos 2 2 2

cos 2 2 2

F

F

x k x

x k x

 

 









    

    
 (26) 

Since in a TLL the fields fluctuate, the spin and charge correlations decay rapidly in space and 

time. For sufficiently large 
1

g , in contrast, static modulations arise. In a charge density wave 

(CDW) the modulation for both species is in phase, so that the charge density oscillates, while there 

is zero spin modulation. Intuitively, one should expect the SDW to be more stable, because 

Coulomb correlation tends to oppose a CDW. The strength of all the interactions discussed here 

depends, however, on additional effects, most prominently on electron-phonon interaction. It is due 
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to these effects that CDW phases can be stabilized and are in fact quite common in low-D 

compounds.  

 

Fig. 10: “Phase diagram” for 1D chains showing how the dominant correlations depend on 
1

g and 

2
g  assuming spin-independent interactions. 

 

Fig. 10 shows a “phase diagram” of 1D systems for spin independent interactions. Since in 

1D pure phases are not stable (see below) the diagram essentially shows the strongest correlations, 

i.e. those for which the correlation functions decay most slowly. Phases shown in brackets are 

subdominant correlations. 

 

Charge Density Waves 

As stated above, CDW phases are stabilized by electron-phonon interaction. For a 1-D system the 

mechanism can be illustrated as in Fig. 11: In 1D there is a forbidden range in the particle-hole 

excitation spectrum at finite energies between 0q  and 2
F

q k (Tosatti, 1975; Bertel & Menzel, 

2010). This is easily seen from a consideration of possible single particle excitations in a 1D 

parabolic band.   

 

Fig. 11: (a) In 1D, the low-energy particle-hole excitation continuum exhibits a forbidden low-energy 

range for 0 2
F

q k  . (b) At 2
F

k an acoustic phonon branch can hybridize with the particle-hole 

excitations thus opening a gap in the excitation spectrum and simultaneously generating a frozen 

phonon, i.e. a static periodic lattice distortion (PLD). 
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At 2
F

q k , energy and momentum conservation allows hybridization of particle-hole 

excitations with acoustic phonons (see Fig. 11). As a consequence, the phonon softens, i.e. is 

depressed in energy. One may envision this process as being caused by the 2
F

k charge density 

modulation resulting from the ' 'k k q  and k k q  excitations. The induced charge density 

screens the restoring force for the oscillating ions. Accordingly, the response function  q

determines the stability of a CDW phase. The response function is defined by the charge response 

to a local perturbing potential 

 

      , , ,
loc

q q V q      (27) 

For global stability considerations we may neglect fluctuations and replace the dynamic 

susceptibility  ,q  by its static counterpart 

 

  0

1 k q k

k
k q k

f f
q

 






 
 

 (28) 

with 
k

f  being the Fermi function. The local potential is the combined effect of the “external” 

potential 
ext

V , and the potential caused by the induced charge  q
 

 

    ind
V q g q  (29) 

With eq. (27) we arrive at 

 

         0 ext
q q V q g q     (30) 

Defining an effective response function we finally obtain 

 

      
 

 
 0

0
1

eff ext ext

q
q q V q V q

g q


 


 


 (31) 

 

Eqs. (27)-(31) can be interpreted as resulting from an iterative process: (i) calculate the charge 

density 
ind

 induced purely by 
ext

V , (ii) use this charge density to calculate 
ind

V , (iii) combine 
ext

V

and 
ind

V to 
loc

V and re-calculate 
ind

 , (iv) start the cycle again from (ii) (note that the coefficient of 

0
 in (31)  

1

0
1 g



 has the form of the sum of a geometric series). Thus  the charge response 

function 
eff

 contains contributions from both interactions, the 
1

g and 
2

g type mentioned above up 

to infinite order. In the present context of CDW instabilities we are interested in perturbations with 

wavelength 2
F

q k    . Consequently, the strength of the 2
F

k  (i.e.
1

g ) interaction dominates 

the behavior of 
eff

 . If only the charge density fluctuations are considered and the potential set up 

by the ion cores is omitted, Coulomb interaction dominates and 
2 2

0
g e q (see Bertel & Menzel, 

2010). Since the charge response function  q is < 0, it is clear that the Coulomb interaction tends 

to suppress a CDW phase. On the other hand, if the ion cores are included into the balance, g may 

switch sign and a singularity can appear in eq. (31) . Such a singularity indicates a phase instability, 

in the present case the transition into a CDW phase. Simultaneously, the 2
F

k phonon energy drops 

to zero, which is equivalent to the appearance of a static periodic lattice distortion (PLD). Eq. (31) 

indicates that a singularity in the “bare” response function  0
2

F
k  is not sufficient to cause a 
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phase transition. In contrast, the Fermi-surface nesting criterion often used in discussing CDW 

instabilities, is based on precisely this argument. Letting 
k q k F
  


   one obtains a divergent 

 0
2

F
k , if the summation in  eq. (28) extends over a finite interval, i.e. if finite sections of the 

opposite Fermi surfaces can be connected by the same 2
F

q k . Since in one dimension the Fermi 

surface is composed of two infinite parallel sheets at 
F

k , the criterion of Fermi surface nesting is 

always fulfilled. However, applying this criterion is equivalent to using eq. (27) instead of eq. (31). 

Following the discussion presented by Johannes and Mazin (2008) we can identify several effects 

opposing a transition into a CDW phase: (i) In 1D, long-range order is always destroyed by 

fluctuations at any finite temperature; (ii) no real material is purely one-dimensional. Coupling to 

adjacent chains or to a substrate will always cause some deformation (warping) of the Fermi surface 

and thus reduce the nesting; (iii) at finite temperatures the divergence of 
0

 is rapidly attenuated due 

to the Fermi function broadening; (iv) using 
eff

 instead of 
0

 , thus including the interactions 

contained in the coupling constant g , will in general destroy the divergence as well. Nevertheless, 

CDW phases are observed in a number of bulk (Jérome & Schulz, 2002; Johannes & Mazin, 2008; 

Whangbo, Canadell, Foury & Pouget, 1991) and surface systems (Bertel & Menzel, 2010; 

Hasegawa, 2010; Oncel, 2008). A key point is the inclusion of electron-phonon coupling as pointed 

out above. As evident from (31), a divergence in 
eff

 may occur if  0
1g q  . Another point is 

that the actual energy gain upon formation of a CDW/PLD is not restricted to the Fermi surface. 

While we have argued above that the 0 and 2
F

k contributions from Fermi-surface to Fermi-surface 

excitations are strongest due to the energy denominator, other contributions are non-negligible, if 

integrated over the (surface) Brillouin zone. Consequently, the interaction is not well localized in k-

space. In fact, there is a smooth transition between the long-range CDW interaction (sometimes 

called weak-coupling CDW) and the local bond distortion regime (strong-coupling CDW) where 

the interaction is localized in real space and is almost completely smeared out in k-space (Aruga, 

2006).  

The preceding discussion can be summarized as follows: (i) A CDW phase is hardly ever 

restrained to the electronic system. Coulomb interaction would rather favor a SDW in such a case. 

Instead, a CDW requires an enhanced electron-phonon coupling and is generally associated with a 

PLD. (ii) The occurrence of a CDW instability is governed by 
eff

 rather than the bare charge 

susceptibility
0

 . Accordingly, Fermi surface nesting is not a reliable criterion to identify possible 

CDW systems, although a certain extent of phase space for low-energy k k q   excitations is 

certainly required. This can be provided by nesting, but also by the presence of saddle points at EF 

(Rice & Scott, 1975).  

 

Phase Transitions and Fluctuations 

 

The question of phase transitions in 1D is often discussed with reference to the Ising model. This is 

a special case, because it doesn’t have a continuous symmetry. If the interaction has a finite range, 

the correlation length diverges only as 0T  . A simple argument based on assuming a nearest 

neighbor interaction J  only is the following: Reversal of a single spin in an otherwise perfectly 

ordered chain costs a magnetic exchange energy of 2J . The associated entropy gain, however, is 

k ln . Here   is the number of configurations with a flipped spin, i.e. N , the chain length. The 

Free Energy change is consequently 2 lnF J kT N   , which is always negative if N   and 

0T  . A more precise statement is: The correlation length decays exponentially for all finite 

temperatures.  
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In contrast, phase transitions at finite T exist, if the system exhibits long-range interactions 

klJ which decay as 1 k lr r


  and 1 2  . Furthermore, the Wagner-Mermin-Theorem asserts that 

there is no spontaneous symmetry breaking of continuous symmetries in D ≤ 2. This still allows the 

evolution of algebraically decaying correlation functions in a Kosterlitz-Thoughless transition under 

certain circumstances, for instance for a Heisenberg chain with spin ½ particles. Algebraically 

decaying correlation functions establish quasi-long-range order. In practice, the observation area is 

always limited, for instance by a finite coherence length in a diffraction experiment  or by the 

terrace size in a surface experiment, so experimentally the difference between quasi-long-range and 

true long-range order would be washed out. 

In any case, fluctuations are a hallmark of low-dimensional systems. While fluctuations in a 

3D system with a continuous phase transition are limited to a narrow temperature range around cT , 

the prominence of fluctuations is considerably enhanced in low dimensions with respect to both, 

temperature range and intensity. The role of the dimensionality can be most easily appreciated by 

examining the Ginzburg-Levaniuk criterion. It has been developed to establish the validity range of 

the Landau theory of continuous phase transitions. On the one hand, Landau theory is based on the 

truncated expansion of the free energy in powers of the order parameter around 
c

T . This works only 

close to 
c

T . On the other hand, it is a mean-field theory that is expected to fail, if fluctuations 

become important, as they do around 
c

T . The mean-field theory stays meaningful as long as the 

fluctuations are small in comparison to the expectation value of the order parameter. The latter 

criterion can be cast into the following form (Stolze, 2007)  

 

  
4

2

0
1

D

B c

cD

k T
T T


  


 (32) 

Here,  and 0 are parameters in the Landau expansion and  is a measure of the domain wall 

formation energy. Thus fluctuations become negligible for 4D as 
c

T T , 4D  is the marginal 

dimension and for 4D fluctuations become increasingly important around 
c

T  . As D is lowered to 

1, they extend over an ever-wider temperature range. 

The presence of fluctuations has very interesting consequences for the behavior of a material. 

The dissipation-fluctuation theorem relates a material’s response to an external perturbation with 

the internal fluctuations. Specifically, the static response function can be expressed in terms of the 

order parameter fluctuation: 

 

    221
0,

B

T m m
k T

      (33) 

where m  is the order parameter. Thus a strongly fluctuating material (in thermodynamic 

equilibrium!) exhibits a “giant” response to external fields and should therefore be technically 

relevant for sensor and switching applications. By virtue of the Clausius-Mosotti equation a large 

response function is associated with a large macroscopic polarizability. A particularly interesting 

situation arises, if the critical temperature for the continuous phase transition associated with the 

fluctuations approaches zero. In that case one has a quantum phase transition. At sufficiently low 

temperature quantum fluctuations take over from thermally driven fluctuations and an entirely 

different regime of scaling laws applies (Sachdev, 1999; Sachdev, 2000; Vojta, 2003). A glance at 

phase diagrams of cuprate superconductors reveals their likely connection to quantum phase 

transitions as illustrated in Fig. 12. The phase boundary between the pseudo gap and the strange 

metal phase drops with increasing doping and is believed to head towards a quantum critical point. 

It is, however, not reached, because the quantum critical point is preempted by the superconducting 
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phase. The strange metal phase is, among other things, characterized by an anomalous temperature 

dependence of the resistivity, while the pseudo gap phase is either associated with phase 

fluctuations of the superconducting order parameter or with other fluctuating order parameters, such 

as SDW or CDW order parameters. In fact, the pairing interaction in the superconducting phase is 

very likely connected to such fluctuations. A semi-intuitive picture for d-wave symmetry 

interactions generated by antiferromagnetic fluctuations is shown in Monthoux, Pines & Lonzarich 

(2007) (see also Bertel & Menzel, 2010). Another manifestation of fluctuations, in this case 

fluctuations of the charge density, is the striped phase of cuprate superconductors (Zaanen, 2006). 

While there appears to be general consensus about quantum fluctuations driving high temperature 

superconductivity, it is not clear, which type of correlations (antiferromagnetic, charge density 

wave, orbital ordering,…) is the critical factor in raising Tc far beyond the limit of BCS theory 

(Norman, 2011).  The recent discovery of the Iron based superconductors added another twist to the 

game. Although the symmetry of the order parameter is apparently different from that of the 

cuprates (Mazin, Singh, Johannes & Du, 2008) ( s symmetry instead of d-wave symmetry), there 

are some conspicuous parallels (Basov & Chubukov, 2011).  

 

 
Fig. 12: Schematic phase diagram of a cuprate superconductor. Adapted from Canfield  

(2011). 

 

The prevailing view is that the high Tc in the iron superconductors is caused by spin density 

wave fluctuations. Evidence for nematicity, i.e. broken rotational symmetry has been found in these 

compounds as well. This is reminiscent of the cuprate stripes and represents another hint that one-

dimensional physics may hold a key to unconventional superconductivity. Perhaps “one-

dimensional” should be interpreted a bit more loosely in this context, for instance as the presence of 

a 2 Fk interaction, where the coupling vector q designates a preferred direction in which CDW or 

SDW correlations develop.   

 

Outlook and Concluding Remarks 

 

Towards the end of this short walk along 1D systems it should be mentioned that despite the 

impressive progress made in the theoretical modeling, the understanding of coupled 1D systems is 

still incomplete. However, from the brief discussion of fluctuations and unconventional 

superconductivity it appears fair to say that the most exciting physics arises at the transition from 

1D to 2D, i.e. precisely as 1D systems start interacting, or at the transition from 2D to 1D, i.e. as 2D 

systems start to spontaneously develop 1D features. Quantum wires at surfaces (Blumenstein et al., 

2011; Bertel & Menzel, 2010) offer a unique opportunity to tune the interactions and 

simultaneously to image the ensuing correlations in both, direct and reciprocal space. While this 
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might not help in avoiding Friday afternoon traffic jams, it is likely to promote a deeper 

understanding of physics in low dimension and – among other things - it may eventually even help 

to solve the problem of the still enigmatic high-Tc superconductivity. 

The present paper has been written with the aim to foster an intuitive understanding of basic 

concepts used to describe 1D systems. It offers some complementary material for a physics 

undergraduate course of solid-state physics, where correlated materials are often underrepresented. 

Hopefully, experimentalists, chemists working in materials science and other interdisciplinary 

scientists from related fields, who lack the formal training to delve into the TLL theory proper may 

profit from the material presented here.  
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