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Abstract 
The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that 
the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point 
magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere is located at 
the shell’s geometric center. The proof is based on the London’s equation transformation to an integral equation for the 
vector potential of system. The integral equation may be solved completely in case of the solid sphere.  
Keywords: Meissner effect, London’s equation, vector potential, integral equation. 

Introduction 

The problem of uniform magnetic field expulsion, it’s value Bext is less then the critical one (Bcr), 
from the superconducting solid sphere volume (figure 1) was discussed in textbooks on the 
electrodynamics and on the solid-state physics many times. For a student – physicist it is the useful 
illustration of Meissner effect in elementary functions and without any idealization of situation, 
which is occurred, for example, in the problem of “infinite” slab in a parallel field. For the case of 
approximation λ → 0, where λ is the field penetration depth in a superconductor we find it’s 
presentation in the initial university physics course already (Sivouchine, 1983). By this author of 
the textbook makes educated guess, that in an external field the sphere behaves like a point 
magnetic dipole with an unknown magnetic moment ℜ . Using of such educated guess seems to be 
quite acceptable in the general physics course however it is hardly right in textbooks for 
undergraduate students. Meanwhile the prompt message that the supercurrent modulus j(R) angular 
dependence is  

θsin)()( 0 ⋅= Rjj R , (1) 

(R, θ are the coordinates shown in figure 1, j0 is a function of only the R coordinate) may be 
occured, for example, in (Batygin and Toptygin, 1978) although this book is intended for a more 
advanced student. In this textbook the superconducting solid sphere is considered out of the 
approximation λ → 0 already, but in the situation when the London’s equation 
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Fig. 1. Solid superconducting sphere of radius a in an external uniform magnetic field.  The arrows are the 
total magnetic field B induction vectors in different points of the sphere’s equatorial plane 

is applicable (B(R) is the total magnetic induction vector, jext BBB += , where Bj(R) is the 
supercurrent field induction vector, c is the velocity of light). The method of solution in (Batygin 
and Toptygin, 1978) is the next: the projection of equation for supercurrent, 

jj ⋅−= 2
1rotrot 
λ

(3) 

on the eϕ basis vector of the figure 1 coordinate system, is, taking into account the supercurrent 
modulus independence on the azimuthal angle ϕ : 
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(t = R / λ ). Equation (1) yields with (4) 
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The general solution of (5) is (Nikiforov and Uvarov, 1988): 
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where k1 and k2 are some constants being defined by boundary conditions. For the solid sphere we 
must demand j(R = 0) = 0. Expanding exponents in (6) into a series and inserting t = 0 there, we 
obtain k1 = k2 = k. Further, using (2), student may calculate the total field induction value B(R) at R 
≤ a and, in particular, the value B(a – 0). Postulating that at R > a 
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and joining components of B at R = a – 0 and at R = a + 0 one can derive 
)/sinh(16/3 2

ext λπλ aaBсk ⋅= , (9) 
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and the problem is solved completely. 
The method of attack of Batygin and Toptygin was practically criticized in the article (Matute, 
1999). On author’s opinion, «the general formal solution is avoided» in (Batygin and Toptygin, 
1978) and other textbooks, although «the problem can be solved by standard methods which is 
actually presented in the textbook». In the article (Matute, 1999) the field equation 

BB ⋅−= 2
1rotrot 
λ

,    R ≤ a, (11) 

is considered together with the Maxwell equations. Combining it and taking into account the 
symmetry of problem one come to some equation for the Br field component only. Solution of this 
equation is searched as a series in the Legendre’s polynomials Pn(cosθ). The Bθ component of 
vector B is searched as a series in terms of the functions P1

n = dPn (cosθ )/dθ .  
The Maxwell equations solution for R > a is known (Jackson, 1962):  
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where сn are still unknown coefficients. Equating (12) – (13) and the solution of (11) at r = a , they 
derive сn , by this сn = 0 for all indexes n > 1. That is to say that when R > a, the field Bj of 
superconducting solid sphere coincide with the field of a point dipole. Thus the formulated problem 
may be solved without any prior guess. The results of article (Matute, 1999) gave the groundwork, 
which is necessary for the exhaustive understanding of the solution of problem by an 
undergraduate student. However attempts to adapt the algorithm, having been developed in this 
work to analogous problem concerning the hollow sphere show noticeable increasing of the routine 
calculations volume, which are necessary for the proof of the super-current field Bj dipolar 
character. This proof became even more cumbersome when the magnetic dipole is added into the  
sphere’s cavity. Can an educator recommend to an undergraduate student the other way of solution, 
which will be not more cumbersome and will be interesting for the intellect? 

Hollow superconducting sphere (superconducting shell) in an uniform magnetic field. 

Let us consider the hollow superconducting sphere of inner radius h, outer radius a and volume V 
(figure 2). Let us prove the next prime statement: in the external uniform field Bext  
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Fig. 2. Hollow superconducting sphere of inner radius h and outer radius a in an uniform magnetic field. 
The context of arrows is the same as in the previous figure. 

the field of supercurrent Bj(R > a) coincides with the field of a point dipole. For this purpose we 
introduce vector potentials Aj , Aext , A accordingly the formulae Bj = rotAj , Bext = rot Aext , B = 
rotA.  Owing to the cylindrical symmetry of problem we can calibrate it so that all of the three 
vector potential modulus are not depend on the azimuthal angle ϕ of our coordinate system. Then 
all of the three vector potentials divergences are zero in all space. According to (Batygin and 
Toptygin, 1978) in such a situation   

)()()( jext RARARA += .  (14) 

By this (Jackson, 1962; Batygin and Toptygin, 1978), 
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As divA = 0, one can use the London’s equation in the form 
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Combining (14) – (16), we derive (h ≤ R ≤ a): 
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where 
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Let us confine ourself to R radius-vector, lying in the plane of figures 1 – 2. Projecting the equation 
(17) on the axis, which lies perpendicularly to this plane (Jackson, 1962), we derive the equation 
for the vector potential modulus already 
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In dimensionless variables r = R / a, AA ⋅=
aBext
2~ , this equation may be rewritten as 
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Here 22 4/ πλδ a= , V~ is the volume of unit outer radius hollow sphere in an imaginary space; it’s
inner radius is h / a. We have the so named 2 – type nonhomogeneous Fredholm equation. One of 
theorems of the integral equations theory states (Korn and Korn, 1968): if the integral 
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Neumann’s step-by-step approximations series  
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is converging to a solution of (20) uniformly inside V~ . One can find in (Prudnikov, Brychkov and
Marichev, 1986): 
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and the boundedness of both function G(r) as a fortiori function F(r) < G(r) at 0 < r ≤ 1 became 
evident. Suppose the formula 4

cr )/(1/)0( TT−= λλ  is correct (Ashkroft and Mermin, 1976) where 
Tcr is the superconducting transition temperature. We conclude that some temperature interval Tx ≤ 
T ≤ Tcr exists where the series of functions (21) – (22) is converging to a solution of equation (20). 
Near the Tcr , where δ → 0: 
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Using the expansion of rr ʹ′−/1  in spherical harmonics (Jackson, 1962) we obtain 
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, where S is the unit sphere surface, 1),max(/),min(),( +ʹ′ʹ′=ʹ′ ll
l rrrrrrF . As 
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what is verified easy (δm, n is the Kronecker symbol), then 
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to calculate )(~2 rf  in an explicit form although it may be made very easy). It follows from (22), (26) 
and (27) that formula with the structure analogical to (27) will be reproduced at any step of iteration 
process with character replacement 2 → n in (27). So, when the superconductor is cooled down 
from Tcr temperature, only the radial distribution of field is changed but it’s angular distribution is 
unchanged. We conclude that in all the region of Neumann’s series (20) – (21) convergence, at h ≤ 
R ≤ a, 

ϕθ eRA ⋅⋅= sin)()( Rf . (28) 

where f(R) is a function only of the R variable. Let us insert (28) and (16) in (15) at R > a. It gives: 
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This is the vector potential of a point magnetic dipole. We have proved the prime statement at the 
temperatures Tx ≤ T ≤ Tcr. That will do as we now have a right to use the function (6) in this 
temperature interval and further to confirm that formula (6) is correct at an arbitrary temperature. 
Now if a student knows indefinite integrals of the elementary functions, he will calculate the value 
A(R) at h ≤ R ≤ a explicitly without problems. For this purpose it’s necessary to insert (1), (6) and 
(16) in the both parts of (20) and to equate coefficients at the same degrees of r. We present the 
final result:  
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Inside the cavity, the formulae (15) – (16) give: 
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and after a simple calculations 

SahR λ/2)( extBB ⋅=< . (33) 

Expanding exponents in (31) as a series in the parameter ε = a / λ, one can prove that at any h and a 
it will be B(R < h) < Bext  always. Hollow superconducting sphere in a field of point dipole located 
at it’s center and the generalization of problems. 

In the article (Hurault and Pincus, 1969), the problem was formulated inter alia: to determine 
magnetic field inside the infinite superconductor surrounding a monodomain ferromagnetic sphere 
of radius  and of magnetization Ms . The solution of equations (3) and (16) for this 

Fig. 3. Hollow superconducting sphere of inner radius h and outer radius a in the field of a magnetized 
sphere with the dipolar moment pm . The context of arrows is the same as in the previous figures. 

problem, resulting in this article is  
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The method being developed in the previous paragraph allows to provide the necessary background 
for this formula which is absent in (Hurault and Pincus, 1969). We will make it for the more 
common situation of the superconducting shell in the field of a ferromagnetic sphere with the 
magnetic moment pm  located in it’s center (figure 3). Just the same method as in the previous 
paragraph leads us to the equation, 
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instead of the equation (19). The dimensionless variables are here r = R / a, m
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Further consideration duplicates the text beginning from formula (22) to formula (28) with the 
rewritting of function θsin)(~ 2]1[ ⋅= −rA r  instead of function θsin)(~ ]1[ ⋅= rA r  overall. Inserting (1), 
(6) and (16) to the both parts of (36) and equating coefficients of the same degrees of r, we obtain 
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When a → ∞ and   = h we reproduce the result of (Hurault and Pincus, 1969). 
The field inside the cavity (  < R < h): 
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where Bfm(R ) is the field of ferromagnet outside it. 
Let A1(R) is the solution of the equation (17) for the superconducting shell in the field of the 

uniform magnetic field Bext and A2(R) is the one’s solution for just the same shell in the field of 
point dipol being located in the center of shell (B1 = rotA1 , B2 = rotA2 , B = B1 + B2). For the case 
of very weak field B (B < Bcr is elsewhere), A(R) = A1(R) + A2(R) will be the vector-potential for 
just the same superconductor in the field both of that dipol inside it and of Bext outside it. A 
consequence of the results stated above is the fact that the formula (28) will be correct also in this 
most common situation. The detailed calculations of the field distribution may be easy executed 
with the help of formulae (30) and (37). 

Conclusions 

Using results of the integral equations theory allows to put the novel method of solution of the 
problem about the superconducting sphere in a magnetic field into pedagogical practice. This 
method is alternative to the traditional one, when the London’s equation solution inside a 
superconductor and the Maxwell’s equations solution outside it are joined on it’s surface. The 
advantage of this method over the tradition one lies in the fact that the change from the problem 
about the solid sphere in an uniform field (problem №1) to the problem about the hollow sphere in 
an uniform field plus the field of a dipole (problem №2) doesn’t bring the solution’s significant 
amplification. One may say that now not only the problem №1 is open to understanding of a student 
but also the problem №2. Nevertheless if an educator on the lecture wants to confine oneself to the 
situation of the solid sphere, he can now demonstrate the solution of equation (20) which is given 
in Appendix instead of to integrate the contents of (Matute, 1999) and (Batygin and Toptygin, 
1978). 
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Appendix 

When h = 0, the integral equation (20) is solved very simply and there is no necessity to cite the 
formula (6). For this purpose let us insert (28) in (19). In combination with (26) it gives the next 
integral equation for the function aBrfr ext/)(2)( =ω : 
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As aforesaid, the functional sequence ω[n](r), where θω sin)()(~ ][][ ⋅= rr nnA  convergents to a
solution of (39) at 0 ≤ r ≤ 1 and at an infinitesimal ε. Being made some iterations, student may 
notice that 
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where bn
j,i are some coefficients. Formula (40) is proved elementary by the method of mathematical 

induction. Suppose ω(r) is infinitely differentiable function at r = 0 both on r and on ε variables. So 
when n → ∞, coefficients of the series (40) must tend to the coefficients 
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So we may search the solution of (39) as 
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Now let’s insert (44) in (43). It gives 
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Definitely 
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Inserting (46) to (29) we immediately come to (10). 




