
European J of Physics Education   Volume 7 Issue 2   1309-7202                Mei 

 

28 
 

Systematic Convergence in Applying Variational Method to Double-Well 

Potential 
 

 
Wai-Ning Mei 

 

Department of Physics 

University of Nebraska at Omaha 

Omaha, Nebraska 68182 

United States 

physmei@unomaha.edu  

 

 

(Received: 24.10.2016, Accepted: 01.11.2016) 

 

 

DOI: 10.20308/ejpe.04084 

 

 
Abstract 
In this work, we demonstrate the application of the variational method by computing the ground- and first-excited 

state energies of a double-well potential. We start with the proper choice of the trial wave functions using optimized 

parameters, and notice that accurate expectation values in excellent agreement with the numerical results can be 

aquired by cautious systematic improvement of trial wave functions. 
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INTRODUCTION 
 

In this paper, we focus on employing the frequently taught variational principle (Griffiths, 2005) to 

compute the ground- and first-excited state energy levels of a simple symmetric, double-well potential 

which has extensive applications in a wide range of different areas of physics mostly in systems with 

degenerate ground states: from field theory to atomic, molecular physics, and consdensed matter physics  

(Keung, Kovac, & Sukhatme, 1988. Hardy & Flocken, 1988. DeMille, 2015).  

First, the present approach is stated in many renowned quantum mechanics textbooks (Schiff, 1968. 

Merzabacher, 1961. Cohen-Tannoudji, Diu, & , 1977): that is the ground state energy Egs of a 

system can be calculated from using any trial wave function trial which will always be greater than the 

true total ground state energy Etrue and will be equal only when we happen to choose the correct wave 

function. In fact, this principle can be extended to the excited states, provided the trial wave functions are 

orthogonal to the ground-state and excited-state wave functions (Griffiths, 2005. Mei, 1996, 1997, 1998, 

& 1999. Ninemire & Mei, 2004) determined previously. It is understood that when applying the method, 

we first calculate the total energy Etot from a trial wave function, and then minimize it to obtain the best set 

of parameters: this is achieved by differentiating the total energy with respect to each variational 

parameter, and solving the resultant system of simultaneous nonlinear equations by using the numerical 

software packages, such as Maple or Mathematica. Next we substitute the optimized parameters back to 

deduce the total energy. So it is clear that the variational method is straightforward to implement, yet it is 

not strongly emphasized in several commonly adopted textbooks mentioned earlier: at the start, the 

principle is stated in a forthright manner, followed by examples with known solutions, but rarely is a 
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whole chapter developed on the subject as the textbook of Griffiths (2005), hence many students are not 

aware of its importance and practical applications.  
Actually, accomplishing good results when applying the variational method hinges primarily on a 

clever choice of the trial wave functions suited to the problem: this depends on good physical insight and 

mathematical skills in evaluating the expectation values. It is important to choose a reliable wave function 

that reflects the true nature of the problem, which can be manipulated analytically renders the lengthy 

numerical computation can be reduced as much as possible. Successful examples of applying this method 

in the areas of molecular and condensed matter physics are abundant in the last several decades, not only 

is their agreement with the experimental results impeccable, but those novel methods developed also guide 

us into deeper understanding of the systems studied and the ideas gained extend into new areas of physics. 

Thus we should encourage students to familiarize with the method and let them know that will enrich their 

training. Here are a few renowned examples: Heitler and London's (1927) pioneer study on H2 molecule 

revealed the concept of valence bonding; the Bardeen-Copper-Schrieffer (BCS) (1957) theory of 

superconductivity, based on a set of ingeniously constructed electron-pair wave functions, provided us 

with the full knowledge of the ground-state properties and excitation spectrum; Feynman's approach to the 

superfluid helium (1953. Feynman & Cohen, 1956), with the introduction of the correlated basis wave 

functions and quantum statistical mechanics arguments, directed us to understand the mechanism and 

energy-excitation spectrum; and the polaron problem (Feynman, 1955), with the application of the path-

integral formulation that taught us to tackle the electron-phonon systems with different ranges of coupling 

strength. Techniques developed from these landmarks are still used in today’s mainstream research. 

Despite advancement in numerical simulation and computation techniques, there are still exciting 

problems require insights and analytical mathematical techniques to unravel, such as investigating the 

strong correlation effects in Hubbard model (Gutzwiller, 1965), integer and fractional quantum Hall 

effects (Laughlin, 1981, 1983), novel trial wave-functions are constructed to verify different intriguing 

scenarios. Thus in this work we emphasize on teaching of the variational method during quantum 

mechanics classes: by providing more interesting example for practice, our students will learn the method 

and be encouraged to apply it in the real situations. For many years, the prowess of the variational method 

was demonstrated by several groups of my students in their research projects (Hedgahl, Johnson III, 

Schnell, & Ward, 2008. Koch, Schuck, & Wacker, B, 2008). They found the experience rewarding for 

developing their research careers, because the numerical software packages relieved them from lengthy 

computations and enable them to focus on constructing the trial wave-functions and analyzing results.  

In many cases, solving numerically Schrödinger equation with a particular model potential is time-

consuming and the solutions are not easy to implement. This is why many other approximation 

techniques, such as the Wentzel-Kramers-Brillouin (WKB) approximation method, are taught in the 

above-mentioned commonly adopted undergraduate textbooks and have been shown to be of great use in 

finding bound states and elucidating tunneling effects. However, the double-well potential bound-state 

energies are hard to calculate when the well depth increases. Indeed known numerical integration 

techniques can provide accurate energies, but the tabulated numerical wave functions are difficult to 

utilize. Only in rare cases are there a few specifically constructed double-well potentials for which their 

one-dimensional Schrödinger equations can be solved analytically (Manning, 1935.  Razavy, 1979): the 

first one was used to simulate the energy spectra of molecules like NH3, and the other provides solutions 

to explain diffusion phenomena described by the Fokker-Planck equation. Yet in both cases the potentials 

and their solutions are composed of hyperbolic functions which are not easy to extend to other problems. 

Thus, in most cases a simplified potential V(z)=z4-γz2 composed of a postive quartic and negative 

quadratic term, where γ is a postive constant, is used to illustrate the essential degenerate nature of this 

potential: i.e. there are two equivalent minima located at zmin= ±
g

2
 with depth Vmin=-

g 2

4
. So when γ 

increases, the two minima separate further apart, the potential becomes deeper, and the lowest two 

energies get closer.  
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Consequently, one of our purposes is to study tunneling effect between the symmetric ground- and 

antisymmetric first excited-state that is one of the important quantum-mechanical feature of the double-

well potential V(z), which is one of the simplest models able to demonstrate this effect. Particularly it 

becomes evident when a particle having energy much lower than the central maximum is not restricted to 

either one of the wells but allowed to move back and forth between the two equivalent potential minima. 

After comparing different methods, we recognize that it is more conveniently to extract physics insight 

from examining the optimized trial ground- and first-excited wave functions than replying on numerical 

methods, the analysis will be shown in discussion section. 

Generally the tunneling rate through the double-well barrier depends strongly on the energy 

difference E=E1-E0 between the lowest two energies E0 and E1 (Keung, Kovac, & Sukhatme, 1988. 

Hardy & Flocken, 1988). Hence it is interesting to investigate the lowest two energies of a very deep 

double-well potential that is when they appear as a nearby pair. Thus our main goal is to compute 

separately the ground and first-excited state energies and their wave functions of the one-dimensional 

Schrödinger equation, first, by expressing the solutions in terms of Heun’s infinite-series (Ronveaux, 

1995. Slavyanov & Lay, 2000), then adopt Maple or Mathematica computer software packages, in which 

those special Heun functions are programmed, to compute the lowest two energies and wave functions for 

different values of γ. Afterward we use those computed values to compare with those acquired from using 

the variational method stated in Griffiths (2005), Mei  (1996, 1997, 1998, & 1999), and Ninemire & Mei 

(2004). Our purpose is to show, with proper choice of trial functions composed of optimized parameters, 

not only can we generate results with high accuracy in comparison with the numerically-calculated 

energies, but also we obtain analytical wave functions that can be utilized for further computations. 

 

Theoretical Background 
 

Solution of the dimensionless Schrödinger equation with the double-well potential V(z)  

 

-
d2Y

dz2
+ z4-gz2é

ë
ù
ûY =eY                                      (1) 

 

can be expressed in terms of a linear combination of two linearly independent Heun triconfluent functions, 

such as HeunT1, and HeunT2 which can be expressed in the form of infinite series and denoted as H1 and 

H2, respectively (Ronveaux, 1995. Slavyanov & Lay, 2000) , 

 

Y z,g,e( ) = C1H1 z,g,e( ) +C2H2 z,g,e( )                                    (2) 

 

Both of them are complex functions of the scaled variable z, parameter γ, and eigenvalue ε. For 

general eigenvalues ε, they have different asymptotic behaviors: one of them reaches zero when z®¥ 

and diverge as z®-¥, while the other behaves the opposite. C1 and C2 are two arbitrary constants to be 

determined from the boundary conditions. Hence for the bound-state solutions, we require (z, 

)®0 as z®±¥.                                                                          

To ascertain numerical solutions, we replace infinity by a finite range ±R. We found the first few 

wave functions of simple harmonic and anharmonic oscillator potentials (Mei, 1997) approach nearly zero 

around R=4-5. Thus we increase R gradually and notice the roots of the following determinant derived 

from the asymptotice conditions reach convergent values,  
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                                                 (3) 

 

So we regard R=5 as the proper cutoff and compute ε by solving the above determinant equation 

numerically with give . We found H1 and H2 numerically huge and oscillatory, thus we have to describe 

them with a large number of digits, roughly from 40 to 80, depending on the asymptotic conditions to 

assure their convergence rendering the computation of Eqn. (3) reliable. We also found that when crossing 

zeroes of Eqn. (3), its imaginary part is extremely small and real part changes sign abruptly. In this work, 

we only compute the first two eigenenergies and use them to plot the wave functions. Results such as 

energies obtained from both the numerical and variational methods will be shown later for various γ. 

Finally, this way of deducing ground- and first-excited state energies using Heun functions was not 

achieved by any of the previously numerical schemes, as far as we know.  

At first glance, the double-well potential resembles a superposition of two separated simple 

harmonic-oscillator potentials, thus the simplest ground state trial wave function ground for this potential 

is a linear combination of two-displaced normalized Gaussian functions as follows: 

 

Yground z( ) =
1

2
YR z( ) + YL z( )éë ùû,                                     (4) 

where 

YR (z) =
l

p
e

-
l2

2
z-a( )

2

 

and YL (z) =
l

p
e

-
l2

2
z+a( )

2

.        (5)                                  

     

R(z) and L(z) are the two harmonic oscillator wave functions located at the right- and left-hand side 

potential wells, a and λ are the parameters governing the location and shape of the wave functions. 

Nevertheless we notice the above assertion was accurate only when γ is small as shown in Figures 2a and 

3a. Then a serious discrepancy grew as γ became larger that appeared in Figures 2b, 2c, 3b, and 3c. Thus, 

we have to modify the trial wave functions by including more relevant terms, which is a common practice 

when applying variational method and was introduced by Hylleraas (1929, 1970) to calculate the ground 

state energy of the He atom. The procedure became complicated when there are more terms, but the 

results agreed fully with experiments. After few trials, we discovered that by adding higher even-parity 

excited states of the harmonic oscillator wave functions we were able to achieve the purpose for the 

following reasons: first, the higher excited state wave functions spread wider than the ground state, hence 

the improved trial wave functions simulate well the behaviors in the barrier regions; second, it is known 

that the additional terms are orthogonal to each other, that simplifies the normalization and expectation 

value calculations; and third, by adding even-parity excited state components we preserve the symmetry of 

the ground state: i.e. R(z) = L(-z). 

Now we designate them as the group A trial wave function, the right-hand side component is:  

 

YA

R z( ) = dn

n=0

N

å y2n l, z-a( ) ,                                      (6) 

 

where this wave function component situated at the right-hand side of the origin with distance a, λ 

describing the width of the peak, and dn is the coefficient. Notice it is summing over all the higher even-

parity excited states 2n( ,z), which is the 2n-th excited state of the one-dimensional harmonic oscillator. 

Similarly the left-hand side component is expressed as  
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YA

L z( ) = dn

n=0

N

å y2n l, z+a( ),                                                              (7) 

 

Thus a, λ, and all the dn’s are the adjustable parameters, and they can be determined from normalizing the 

trial wave functions and optimizing the total energy. Actually, all the overlap integrals and matrix 

elements of the harmonic oscillator wave functions are not difficult to evaluate, yet it becomes laborious 

when n is large. Fortunately, we can rely on computer algebra packages mentioned earlier, to calculate all 

the integrals analytically, afterward optimize the total energy by using the numerical routines to solve the 

system of simultaneous equations.  

Then we construct the group B trial wave functions by relaxing the restriction that the parameters a 

and λ of all the  components are the same, their right- and left-hand side components are given as: 

 

YB

R z( ) = dn

n=0

N

å y2n ln, z-an( )                           (8)                  

and,                                                            

YB

L z( ) = dn

n=0

N

å y2n ln, z+an( )                                                               (9) 

 

That is, in every new term n there are additional parameters an and n have to optimize, Hence we 

might not have to include as many terms as we did in the group A trial wave functions, but the 

optimization procedures and the overlap integrals are much more complicated than those of the group A. 

The maximum number of variational parameters we reached is 14: that is, the maximum n is 24 or total 13 

terms for group A trial wave functions, and maximum n is 8 or total 5 terms for the group B. From Eqns. 

(6) to (9), we conveniently assign d0=1.  

After the ground state, we find that it is easy to extend the previous work to mimic the first excited 

state with a slight modification: that is, we express the variational wave function of the first excited state 

as: 

 

Yexcited z( ) =
1

2
YR z( ) - YL z( )éë ùû.                                                           (10) 

 

It is easy to show the above wave function is odd, that is excited (-z) = - excited (z), and always 

orthogonal to ground (z) of Eqn. (4), as long as R(z) and L(z) remain the same parity as described from 

Eqns. (4) to (7). Hence, we can compute the first excited state energies in a similar way. There is another 

advantage in constructing the first excited state as Eqn. (10): when  gets larger, the energy difference 

between the two lowest states gets to be small Figure 1. Therefore it is difficult to distinguish the two 

adjacent roots when solving Eqn. (3). However, we can calculate the ground- and first-excited state 

energies separately by using those trial wave functions, Eqns. (4) and (10), thus an accurate energy 

difference can be achieved. 

Finally, we present a quantitative way to judge the merit of our trial wave function trial(z): that is, 

we compare the true potential V(z) with the effective potential Veff (Figures 2 to 6) defined as: 

 

Veff = E tot +

d2Y trial

dz2

Y trial ,
                                                                        (11) 
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Hence when there is discrepancy, we know what to improve and if the effective potential Veff matches 

perfectly with the true potential V(z), this implies the trial wave function trial(z) agrees well with the 

exact solution.  

 

Discussion of Results 
 

In this work, we present two sets of carefully constructed trial wave functions to simulate the ground- and 

first-excited states of a simple double-well potential V(z)=z4-γz2. Following a series of systematic 

improvements, we were able to reach highly accurate energy expectation values. In this section, we 

discuss our results and the interesting phenomena encountered. 

To conduct our numerical calculations, we set the parameter γ to 3, 6, and 9: first, when γ=3 (the so-

called “shallow well”), the ground- and first-excited state energy levels are slightly below and above V=0, 

Figure1b. For γ=6 (“intermediate well”), there is only one pair of states situated at the potential well below 

V=0, Figure 1c. Then when γ=9 (“deep well”), more than one pair of states are located in the potential 

well and the lowest pair is located close to the bottom (Figure 1d). When γ changes from 3 to 9, we find 

E decreases from 0.97 to 2.28x10-4. To compare the energies obtained with those computed from the 

variational method, these are listed in Tables 1 and 2. Before inspecting the variational results, we observe 

a general feature: when using the variational method it is in general easier to reach good accuracy in the 

first excited-state energy than attaining the same for the ground-state energy, we attribute that to their 

symmetric properties: we know the ground state and first excited state of an one-dimensional symmetric 

potential is either even or odd parity. Hence there exists at least one point, the nodal point at z=0, in the 

first excited state wave functions we are sure of, due to its antisymmetry, whereas we only know that the 

ground-state wave functions have no node. 

We start with the simplest two-term variational wave functions and notice that the numerical 

energies obtained only deviate a few percent from the numerical results (Tables 1 and 2). But the effective 

potential Veff calculated by using those simplest trial wave functions are less than acceptable: for γ=3, the 

effective potential Veff is a good fit for the true double-well potential V(z) (Figures 2a and 3a) and the 

spike located at z=0 is much less prominent than those of the γ=6 (Figures 2b and 3b) and γ=9 (Figures 2c 

and 3c). We attribute this two-term trial wave function could not simultaneously describe the behaviors at 

the central region, because both the width zmin and depth Vmin increase when γ progresses from 3 to 9. We 

regard these high-rise peaks as lack of treating properly the tunneling between two deep valleys, hence we 

have to modify the assertion that when γ increases the ground state wave function reduces to a simple 

superposition of two isolated harmonic oscillator ground state wave functions. In order to help the eyes, 

we multiply all the wave functions in Figures 2 to 6 with a factor of 20 or 30. 

To reduce those sharp spikes, we find it effective to add more even-parity higher-order harmonic 

oscillator excited states into the trial wave functions, because of: first, the extents of an excited state is 

larger than that of the ground state and so it embodies more reliable information near the origin; and 

second, it ensures the overall symmetry of the trial wave functions and orthogonality with each additional 

component. Thus starting from γ=3, we add about 6-8 even-parity excited-state components to the 

variational wave functions and find that the ground and first-excited state energies gradually converge to 

the numerical values, and the coefficients dn get rather small for large n. When we reach 12 additional 

terms in the group A wave functions, the calculated expectation values match well with the numerical 

results, i.e. the agreement is good up to 9 to 10 significant figures, and the contributions from those 

addition terms are small. However, as we change γ to 6 and 9, we notice the agreement improves when 

higher excited state components become more important than those of the lower ones, that is, the higher n 

coefficients dn are larger than those of smaller n. For example, as γ=6 in the 14-parameter optimized 

ground state wave function, we find that the first five coefficients are of a similar order of magnitude: 

among them d1 and d2 are slightly larger, that is d1/d0~d2/d0~2, d3/d0~d4/d0~1, and the rest, d5–d12, are 

comparatively small. But when γ=9, we notice the first four coefficients in the lengthiest optimized ground 
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state wave function are much larger than the others, but fairly different from the previous case, namely 

d2/d0~7, d1/d0~d3/d0~5, and all the others, d4–d12, are at least one order of magnitude smaller than those 

previous four coefficients, d0–d3. Interesting behaviors also appear when we examine the results obtained 

from using group B wave functions where the an and  parameters of each additional terms are different: 

for example, in the cases of γ=6 and 9, i.e. when zmin~1.73–2.12. Here are our observations: (I) When γ=6, 

zmin~ 1.73, we find we find a0~1.4, but 2 and 4 are situated near the origin, i.e. a1~0.71, a2~1.63, and 

a3~0.62, but with small and opposite signs in d1 and d2, i.e. d1~0.62, d2~ -0.21 and d3~0.18. (II) When γ=9, 

zmin~ 2.12, we find a0~2.3, and 2 and 4 behave the same for in (I), i.e. a1~0.6, a2~1.4, and a3~0.74, but 

with small and opposite signs in d1 and d2, i.e. d1~0.72, d2~ -0.34 and d3~0.89. Also, the parameters n are 

of the similar magnitude, ~1.6–1.8, for all the 2n’s. Therefore, we realize that when the potential wells 

get deeper and separated apart, the ground state wave function contains more higher excited states 

components of the single harmonic oscillator potential with larger weights, which supports our earlier 

statements that these high excited state components provide better description to the wave functions in the 

central barrier region and tunneling between the two deep valleys. Incidentally, the above-mentioned 

features occur only in the ground state wave functions, the excited state wave functions behaved normally: 

d0 maintaining the largest and all the higher-order term coefficients decrease monotonically. When 

optimizing the total energy, we would like to emphasize: first, it is quick to obtain the optimized total 

energies and variational parameters when there are only few terms in the trial wave functions. Yet when 

γ=6 and 9, we detect there are several competing local minima, which have similar values but different 

sets of parameters. Then we have to exercise great care by adding few more terms and searching the 

neighborhoods of different parameter spaces until one of them reaches the lowest expectation value. When 

adding up to 12 terms, we noticed the real minima agree well with the numerical values, Tables. 1 and 2, 

and the calculated effective potentials Veff match exactly with the true potential V(z) (Figures 4 to 6).  

When using group B trial wave functions, the restriction that all the higher excited state components 

should be orthogonal to each other is relaxed, there are less components but more variational parameters 

than those of group A. For γ=3, we notice that group A trial wave functions has a much better rate of 

convergence than that of group B. In general, the difference between the group A and numerical solutions 

are orders of magnitude smaller than those of group B when there are very few parameters. Next we 

change γ to 6, we see that the ground states of both groups A and B wave functions have the similar rates 

of convergence, especially in the ground state, whereas in the first excited state, the difference between 

group A and the numerical solutions are of two orders of magnitudes smaller than those of group B with 

the same number of parameters. Then for γ=9, we found that the ground state energies calculated using 

group B wave functions converge faster than those from the group A. Yet the first excited state energies 

calculated using group B are still more accurate than those of group A. Finally, we notice that groups A 

and B variational wave functions containing up to 14 parameters matched well with each other and agreed 

with numerical solutions composed of Heun functions deposited in large files. Also we present next to 

each other the optimized ground and first excited state wave functions of groups A and B together with 

their effective potentials and their right- and left-hand side components. Thus from comparing the wave 

functions in (a) to (b) and (c) to (d) from Figures 4 to 6, we realize that even though the groups A and B 

total wave functions agreed fully, but their right- and left-hand side components that manifest overlapping 

between two valleys are not remotely the same, then recognize the tunneling rate change as γ gets larger, 

this is another advantage that just using the numerical method can achieve. 

 

CONCLUSIONS 
 

In conclusion, we have demonstrated that the variational approach, when comparing to solving 

numerically the original differential equations, is effective in attaining accurate results and extracting 

physics insight. Namely, the optimized trial wave functions of group A and B containing up to 14 

parameters can be used to calculate nearly analytically the matrix elements, results derived match closely 

with those computed from utilizing numerical Heun infinite-series solutions that require large files to 
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store, and include more detail features for us to examine, which we believe will constitute a good example 

to teach solving time-independent Schrödinger equation by using variational method.    

In this work, we verify systematically that by adding more terms to the two well-thought out trial 

wave functions that were originally composed of displaced harmonic oscillator ground states, when 

determining the ground- and first excited-state energies and wave functions of the double-well potential. 

The variational results approach gradually with impressive accuracy, 8 to 9 significant figures, to the 

numerical solutions and the wave functions obtained are convenient to use. Furthermore, we have 

extended our calculations to 4 and 12 additional terms in the A and B groups with total 14 parameters, yet 

we believe more accurate results for large  cases can be accomplished by including extra terms in the 

trial wave functions and furnished with more powerful computation facilities. Again, we would like to 

reiterate our goal of this work: advocate for teaching of the variational method in quantum mechanics 

classes. As mentioned in the Introduction, we implement the idea when teaching the subject by proposing 

a topic and guide the students through the entire process, thus the students can learn the method and get a 

publication at the end. Based on our experience, they found this arrangement useful for their training and 

research careers. Finally, we prepare all the Maple worksheets for the interested reviewers and readers to 

evaluate our work, please send requests to the attached addresses. 
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Figures 

Figure 1. (a) Double-well potentials V(x) for γ=3 (black), 6 (red), and 9 (blue) together with the two 

lowest energy levels: ground state (green) and first excited state (brown). Magnified portions of potential 

V(x) (black) and those energy levels are shown in (b) γ=3, (c) γ=6, and (d) γ=9. Notice the difference in 

scale.        



European J of Physics Education   Volume 7 Issue 2   1309-7202                Mei 

 

36 
 

  
Figure 2. Double-well potential V(z) (blue), the two-term optimized ground state wave function ground(z), 

(Eqn. (4), x30, magenta), the effective potential Veff(z) (red) calculated by using ground(z), and the 

difference (Veff(z) -V(z)) (green), for (a) γ=3, (b) γ=6, and (c) γ=9. 
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Figure 3. Double-well potential V(z) (blue), the two-term optimized first excited state wave function 

excited(z), (Eqn. (10), x30, magenta), the effective potential Veff(z) (red) calculated by using excited(z), 

and the difference (Veff(z) -V(z)) (green), for (a) γ=3, (b) γ=6, and (c) γ=9. 

 
 

 

Figure 4. Double-well potential V(z) (blue), the 14-parameter optimized wave functions (z) (x30, 

magenta) and the right- and left-side components (x20, brown), the effective potential Veff(z) (red) 

calculated by using (z), and the difference (Veff(z) -V(z)) (green) for γ=3. (a) and (b) are the ground 

states of groups A and B, (c) and (d) are the first excited states of groups A and B, respectively. 
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Figure 5. Double-well potential V(z) (blue), the 14-parameter optimized wave functions (z) (x30, 

magenta) and their the right- and left-side components (x20, brown), the effective potential Veff(z) (red) 

calculated by using (z), and the difference (Veff(z) -V(z)) (green) for γ=6. (a) and (b) are the ground 

states of groups A and B, (c) and (d) are the first excited states of groups A and B, respectively. 
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Figure 6. Double-well potential V(z) (blue), the 14-parameter optimized wave functions (z), (x30, 

magenta) and their the right- and left-side components (x20, brown), the effective potential Veff(z) (red) 

calculated by using (z), and the difference (Veff(z) -V(z)) (green) for γ=9. (a) and (b) are the ground 

states of groups A and B, (c) and (d) are the first excited states of groups A and B, respectively. 
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Tables 
Table 1. Ground state energies for three different  values: first, comparison between the expectation 

values calculated by using the two-term trial wave functions (Eqn. (4)), and numerical results. Second, the 

comparison of expectation values calculated from using group A and B wave functions with different 

numbers of additional terms (columns before the energy values) but equal numbers of variational 

parameters (middle column). Energy differences are computed with respect to numerical values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground State (Even Parity) 

                                                                   γ=3 
Numerical -0.593493304218 Difference 

  Variational -0.571910174548 2.1582559E-02 

    Group A Difference Parameters                   Group B Difference 

3 -0.593426761214 6.6543005E-05 5 1 -0.593451727401 4.1576817E-05 

6 -0.593493250082 5.4136182E-08 8 2 -0.593492543955 7.6026353E-07 

9 -0.593493303802 4.1632198E-10 11 3 -0.593493294373 9.8455760E-09 

12 -0.593493304218 2.7000624E-13 14 4 -0.593493304151 6.7342021E-11 

                                                                   γ=6 
Numerical  -5.748190520667 Difference 

  Variational -5.678123677177 7.0066843E-02 

              Group A       Difference Parameters                   Group B Difference 

3 -5.742129052672 6.0614680E-03 5 1 -5.743634202410 4.5563183E-03 

6 -5.748166974687 2.3545980E-05 8 2 -5.748172316425 1.8204242E-05 

9 -5.748190278821 2.4184573E-07 11 3 -5.748189440448 1.0802196E-06 

12 -5.748190517384 3.2832901E-09 14 4 -5.748190517717 2.9500296E-09 

                                                                   γ=9 
Numerical -16.126186455298 Difference 

  Variational -16.094256284192 3.1930171E-02 

              Group A Difference Parameters Group B Difference 

3 -16.094421450900 3.1765004E-02 5 1 -16.124246020982 1.9404343E-03 

6 -16.125772740677 4.1371462E-04 8 2 -16.126164112686 2.2342612E-05 

9 -16.126164947436 2.1507862E-05 11 3 -16.126186390164 6.5134000E-08 

12 -16.126185938098 5.1720000E-07 14 4 -16.126186451743 3.5548027E-09 
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Table 2. First-excited state energies of three different  values: first, comparison between the expectation 

values calculated by using the two-term trial wave functions (Eqn. (10)), and numerical results. Second, 

the comparison of expectation values calculated from using group A and B wave functions with different 

numbers of additional terms (columns before the energy values) but equal numbers of variational 

parameters (middle column). Energy differences are computed with respect to numerical values. 
 

 

 

First Excited State (Odd Parity) 

                                                                   γ=3 
Numerical 0.377662068959 Difference 

  Variational 0.390215259367 1.2653190E-02 

             Group A Difference  Parameters                  Group B Difference 

3 0.377678740969 1.6672010E-05 5 1 0.377665058221 2.9892622E-06 

6 0.377662122573 5.3614387E-08 8 2 0.377662247886 1.7892739E-07 

9 0.377662069225 2.6635300E-10 11 3 0.377662120566 5.1607663E-08 

12 0.377662068959 1.3988810E-14 14 4 0.377662069298 3.3923897E-10 

                                                                   γ=6 
Numerical -5.706792517167 Difference 

  Variational -5.665697926927 4.1094590E-02 

Group A     Difference  Parameters                   Group B Difference 

3 -5.706020074916 7.7244225E-04 5 1 -5.698226913438 8.5656037E-03 

6 -5.706746382227 4.6134940E-05 8 2 -5.706787762632 4.7545348E-06 

9 -5.706792500726 1.6440860E-08 11 3 -5.706792325598 1.9156866E-07 

12 -5.706792517153 1.3860024E-11 14 4 -5.706792513783 3.3835699E-09 

                                                                   γ=9 
Numerical -16.125958547074 Difference 

  Variational -16.094251067076 3.1707480E-02 

            Group A Difference   Parameters Group B Difference 

3 -16.109272519090 1.6686028E-02 5 1 -16.124206033394 1.7525137E-03 

6 -16.125780964217 1.7758286E-04 8 2 -16.125953300641 5.2464326E-06 

9 -16.125957815272 7.3180150E-07 11 3 -16.125958473483 7.3590499E-08 

12 -16.125958542663 4.4106017E-09 14 4 -16.125958542941 4.1327013E-09 
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