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Abstract 

This short paper presents an alternative mechanism to explain the wave-particle phenomenon characteristic 

of the motion of elementary particles. It is shown that there is a particular mechanism, namely the corkscrew  

mechanism, which can explain the so-called wave-particle behavior. It is shown that in addition to presenting 

an acceptable dynamical process, the proposed theory extends the underlying physics of Planck’s constant, 

expanding the meaning of the parameters involved in its definition. The Compton wavelength and the 

Schrödinger equation are also derived within the framework of the present theory. Particularly important is 

the diffraction pattern explained with the corkscrew motion.  

Keywords: Wave-particle, kinetic energy, corkscrew dynamics, Planck constant, Compton wavelength, 

diffraction, Schrödinger equation, particles. 
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INTRODUCTION 

The dynamics of very small particles has been challenging scientists for a long time. Particularly 

the diffraction patterns observed with a beam of particle and the double slit experiment 

strongly suggests that particles behave like waves.  The solution to this peculiar behavior was 

proposed by De Broglie [1] at the beginning of the last century and remains the cornerstone 

for most current developments in quantum mechanics. Almost all authors refer to De Broglie’s 

hypothesis to deal with the so-called wave-particle dynamics, which is of fundamental 

importance to build the theoretical framework of modern physics. As there is no suitable 

explanation for that peculiar phenomenon with an acceptable set of laws, as is common in 

classical physics, the solution was to focus on the effect leaving the causes in a black box. Most 

of the physics textbooks present the wave-particle behavior as a natural phenomenon that 

does not require a specific explanation. It is remarkable that Serway and Jewett in the 

excellent textbook Principles of Physics: A Calculus-Based Text [2] clearly state that the 

particle-wave behavior must be accepted, even without an adequate set of physical laws. R. 

Feynman [3] and D. Bohm [4] among others, did not fully agree with the wave-particle model 

commonly adopted to explain the wave behavior of elementary particles and presented 

alternative models.  Anyway, all solutions leave open the basic phenomenological context 

needed to explain some of the experimental results related to the motion of elementary 

particles. This difficulty, however, did not prevent the development of research in quantum 

physics. The difficulty of finding an adequate explanation for the peculiar dynamics of 

elementary particles, suggested by very careful experiments, did not held up theoretical 

advancements. Indeed, the wave-particle hypothesis opened a very rich way to strengthen 

statistical physics in the domain of modern physics.   

This paper proposes an alternative mechanism to explain the singular behavior of 

elementary particles displacing along a straight path. In principle, it applies to the motion of 

very small particles subject to the laws of classical mechanics, except for one critical detail that 

relates the wavelength to the particle’s radius of gyration, as explained in the next section.  

The dynamical model for elementary particle proposed here is the composition of a 

motion in a linear trajectory coupled to a rotation around an axis coinciding with this linear 

trajectory. The linear velocity of the particle coincides with the tip velocity of an ideal 

corkscrew. The rotation of the particle with respect to the inertial frame can vary within two 

limiting values, namely, the same angular velocity of the corkscrew tip and no rotation at all. 

In the first case, the particle is assumed to be fixed at the tip of the corkscrew, and in the 

second case the particle is free to rotate with respect to the tip. Partial connection to the tip 

is also admissible. Particle motion is always referred to the inertial frame of reference, but 

frequently described in a distinct frame fixed to the tip of the corkscrew. Note that the helical 

motion of the corkscrew couples the linear displacement with rotation and this is the detail 

that justifies the adoption of the corkscrew motion as a satisfactory model for analyzing the 

dynamics of very small particles. In fact, the interconnection between linear displacement and 

rotation leads to a space-time relationship suitable for describing wave propagation 
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phenomena. It is also remarkable that the derivation of the kinetic energy of the particle 

excited with the corkscrew motion leads to a generalized definition of Planck’s constant.  

The designation “corkscrew” was used because it closely represents the expected 

motion of a particle in the context of the present paper.  

 

The Corkscrew Model 

Let's assume a particle being transported at the tip of a corkscrew so that it moves 

along a straight path (Fig.1). Additionally, the particle can rotate around the support at the tip 

of the corkscrew. For an elementary angular displacement   of the corkscrew with respect 

to the inertial frame and an angular displacement   of the particle with respect to the 

corkscrew the angular displacement of the particle with respect to the inertial frame of 

reference is given by: 

   = −  

 Now let 2  =  where   is the pitch of the helical path, that is, the displacement 

of the corkscrew tip after a complete turn 2 (Fig.1). We call   the specific pitch of the 

corkscrew. The linear displacement of the tip after an elementary turn  is:  

 =x  

Therefore, the total angular displacement of the particle with respect to the inertial 

frame of reference is:    





 −=

x
 

                                                                  

Fig.1. The corkscrew motion. Linear displacement λ along the x axis is correlated with 

rotation Φ. The linear displacement after one complete turn, Φ =2π is equal to 2πλ. The 

angle φ represents the rotation of the particle with respect to the corkscrew. 

λ λ

u

Φ

φ

m

x 



European J of Physics Education                Volume 15 Issue 1       1309-7202                           Bevilacqua 
 

 
 

4 

Now let t =  where   is the angular velocity of the particle with respect to the 

corkscrew tip and x u t =  where u  is the linear velocity of the corkscrew tip. The equation 

above then reads: 

t
u




 







−=  

The angular velocity of the particle with respect to the inertial frame of reference is: 

                                                                        



−=

 u

t
                             (1) 

The particle is assumed to follow the corkscrew tip along the straight path and can 

rotate about an ideal support at the corkscrew tip [Fig.1]. Throughout this text we will call 

t   the angular velocity instead of frequency, which is already a classical terminology for 

the ratio u . If 0 =  the angular velocity is 2u f =  where f is the well-known 

designation for the frequency u . 

The motion of a single particle in the inertial frame can therefore be described with the 

triplet  , ,u    or  , ,u    with / t  = . The triplet characterizes the motion composed 

of the linear velocity u , the corkscrew specific pitch  and   the particle angular velocity 

with respect to the corkscrew tip.  

Now consider the particle moving along a line with velocity u . The motion of the 

particle at the corkscrew tip admits two limiting cases depending on its connection to the 

support. 

1. The particle is attached to the tip of the corkscrew so that the angular velocity of the 

particle with respect to the inertial frame is the same as the corkscrew itself, that is, 

0 = . 

2. The particle is free to rotate with respect to the support at the corkscrew tip so that its 

angular velocity with respect to the inertial frame cancels out, 0t  = . 

Consider the first case. Since 0 =  from (1) it is immediately obtained ut = . 

This is the angular velocity of the particle with respect to the inertial frame. The kinetic energy 

corresponding to rotation is therefore: 

2
1

2
RE I

t

 
=  

 
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Now with 2I m=  where   and m are the radius of gyration and the mass of the 

particle respectively, the equation above gives: 

2

2
2

2

1




u
mER =  

Now define h m u=  the generalized Planck’s constant, t f u   = =  the 

corkscrew angular velocity and =k to obtain: 

                                                                      
1

2
RE hfk=                                                           (2) 

The principle of Planck parameter invariance: The angular momentum of a particle driven by 

the corkscrew dynamics is constant, that is, L mu=  is constant where m  and u  are the mass 

and linear velocity of the particle, respectively, and ρ the corresponding radius of gyration. 

This principle applies for very small particles. For large particles, massive bodies with 

m  large enough and, consequently, large radius of gyration  , the condition requiring L

equal constant would impose an extremely low linear velocity u . This is not impossible but it 

is beyond the scope of this paper. Therefore, let us consider the application of the theory 

exposed here focused on the atomic and sub-atomic levels. This means, as will be seen in the 

next sections, that the wave-particle behavior will here be restricted to very small particles, 

which is consistent with experimental observations. It is also important to observe that the 

correlation between the generalized Planck’s constant with the radius of gyration requires 

careful consideration about the mass distribution as will be seen later.  

Let us derive the energy corresponding to the translational motion imposed by the 

corkscrew angular displacement: 








u
mumuET

2

1

2

1 2 ==  

With h  and f  as defined above we obtain: 

        
1 1

2
TE hf

k
=                                                                            (3) 

The total kinetic energy can now be written combining equations (2) and (3): 

                                                             
1 1

2
E hf k

k

 
= + 

 
                                                                 (4) 
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The minimum energy principle: The kinetic energy of a particle moving with linear and angular 

velocities as imposed by a corkscrew motion converges to a minimum.  

The value of k  in the equation (4) to match the minimum principle is clearly equal to 

1. Therefore, the ratio =k  is equal to one, 1k = . This condition imposes a peculiar 

property on the mass distribution of particles, namely, the mass of a particle is not 

encapsulated in a box with a fixed contour. This is a necessary condition imposed by the 

minimum principle requiring that  =  or  2= . That is, the mass distribution varies with 

the wavelength. Furthermore, the order of magnitude for the radius of gyration admissible for 

very small particles is approximately one sixth of the corresponding wavelength. A very 

important consequence of the equivalence between radius of gyration and wavelength is that 

=h  the reduced form of the classical Planck constant 2h = Another remarkable 

consequence of the equivalence between the radius of gyration and the wavelength is that, 

keeping the linear velocity u constant, decreasing radius of gyration implies increasing 

rotation speeds as given by the relation /u  = . Now as  =  the radius of gyration 

decreases if the spin increases. This type of motion is clearly observed in ice skating 

performance when the skater brings the arms close to the body to increase the speed of 

rotation.  

With the Plank parameter invariance principle proposed above, it is possible to write  

0 02  u c  = where 0c  is the velocity of the particle and 0  the respective wavelength.  Now 

with 1=  as given by the minimum principle the above relation reads 0 0 u c = . The 

wavelength, or the corkscrew specific pitch, varies in the opposite direction as compared to 

the particle velocity or the corkscrew tip velocity. This means that the wavelength, or the 

corkscrew specific pitch in our model, decreases as the speed of the particle increases. Since 

the particle speed is limited, consequently the corkscrew specific pitch has a lower limit for 

each radiation type which is the corresponding wavelength. This relation is in agreement with 

the classical theory and introduces the role of the radius of gyration in the particle dynamics 

at very small scales. With the principles introduced above the equation (4) may be rewritten 

leading to the well-known energy equation expressing the energy stored in an elementary 

particle.  

                                                                          hfE =                                                                           (5) 

Consider now the second case. The particle is connected to the corkscrew tip but free 

to rotate with respect to the support. That is, the particle is transported by the corkscrew 

along the x-axis but doesn’t rotate with respect to the inertial frame 0t  = . For this case 

only the linear velocity contributes to the kinetic energy. From equation (1) it is immediately 

obtained =u  and the corresponding kinetic energy 
2 2TE mu= . It is however 
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convenient, for a unified development of the theory, to express the kinetic energy in terms of 

rotation.  

As seen earlier in corkscrew dynamics, translation is coupled to rotation through the 

corkscrew pitch  . Therefore, instead of u let us express the energy as a function of the 

rotation  . With hmu =  and fu ==  the kinetic energy reads: 

fhmuET
2

1

2

1 2 ==                                                               (6) 

Where it was assumed as previously 1= . The energy is expressed in terms of an 

ideal particle with the same mass rotating with angular velocity f .   

Now consider the general case corresponding to a particle propelled by a corkscrew 

with specific pitch equal to   and with angular velocity relative to the corkscrew equal to  . 

The particle angular velocity with respect to the inertial frame is given by equation (1). The 

kinetic energy is: 

 

2

2 21 1

2 2

u
E mu m 



 
= + − 

 
 

Now with =k   ( ) ur =   uf =  , muh =  and   0 1r  ,  

                                                       ( )







−+








+= 2

2

1

2

1
rr

k

k
khfE                                                    (7) 

The parameter r  represents the inverse of the degree of detachment of the particle 

from the corkscrew tip. That is, if r  is low the biding efficiency of the particle support to the 

corkscrew tip is high. Therefore, if 0, 0r = =  the particle is fixed at the tip and if 1r = the 

particle is free to rotate with respect to the tip pf the corkscrew. Now as it was shown before 

1k =  and the above equation can be written: 

                                                           ( )







−−+= rrhfE 2

2

1
1                                                            (8) 

This is the fundamental energy equation for our theory. The term ( )2 2r r−   can be 

interpreted as controlling the stored energy. If the particle is attached to the corkscrew tip 

0 =  and therefore 0r = , there is no energy stored in the system. If f =  then the particle 

is free to rotate with respect to the corkscrew, 1r =  and the energy stored in the system is 

given by 2hf . Therefore, if energy is added to a particle moving with the speed of light, it will 

be used to activate the rotation of the particle in the inertial frame. That is, according to the 
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model, it will be used to fix the particle on the tip of the corkscrew. There is no prevailing 

source of energy considering the total energy possibly carried by a particle. Note that, within 

the scope of the present proposal, it is possible for a particle to move without rotation, but it 

is not possible for a particle to simply rotate.  

The Mass Distribution Hypothesis 

In the previous section it was shown that the corkscrew dynamics leads to a very 

important conclusion, namely, the wavelength and the radius of gyration are of the same 

order. This relation imposes that the volume enclosing the mass increases as the wavelength 

increases. We propose two geometries that satisfies this requirement, [Fig.2].  

First, assume that the mass contained in the particle is uniformly distributed in the 

space. In order to keep the density approximately constant as the wavelength and 

correspondingly the radius of gyration increase, the mass must be redistributed along the 

thickness of a hollow sphere [Fig.2(a)]. This hypothesis would impose a continuous 

interference of decelerating particles in a chaotic universe. Therefore, it is not an acceptable 

solution for our problem.   

 

 

 

ρ0

λ0

ρ1 > ρ0

λ1 > λ0

ρ2 >> ρ0

λ2 >> λ0

ρ1

ρ2

ρ0

ρ0

λ0

ρ0

ρ1 ρ
2
 

(a1) (a2) (a3) 

(b
1
) (b2) 

(b3) 

Fig.2. Two hypotheses for the mass distribution for particles moving with different 

wavelengths. (a) uniformly distributed mass; (b) mass divided into two equal portions 
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A second solution is to admit that beyond a certain radius of gyration and the 

corresponding wavelength the particle splits into two similar unities. The new configuration is 

composed by a pair of similar particles turning around the corkscrew axis following a helical 

path. They keep a constant distance from each other with the respective centers remaining at 

a distance equal to 2 . We will call this system the twin particle configuration [Fig.2(a)]. 

Therefore, the idea that a particle is a single object, as is usually assumed, is discarded and the 

twin-particle model is taken as the real configuration. The twin configuration is sustained 

provided that the centers of the two units remain at a distance 2d   where d  is the 

diameter of the particle. Therefore, the critical wavelength crit  is of the order of / 2d  where 

d is the diameter of the particle. If the particles come close together, they will collapse, 

merging into a single unit. Hence, there is a critical limit for the wavelength crit  or 

correspondingly for the radius of gyration crit such that for all crit  and crit   the twin 

configuration prevails, otherwise the particle collapses into a single-particle mode, [Fig.3(b)]. 

Note that the energy intensity as a function of wavelength is well known [5]. 

In the twin configuration, the particles remain in opposite positions in relation to the 

center of a circle with radius equal to  [Fig.3(a)]. The center of the circle coincides with the 

tip of the corkscrew and moves attached to it with a velocity equal to u  [Fig.3(a)]. Note that 

the particles in the twin configuration always remain symmetrically arranged with respect to 

the corkscrew tip O, but the orbital radius  may vary as a function of the wavelength [Fig.3 

(a)]. Summarizing the above ideas, the following principle is proposed: 

The mass bifurcation principle: Particles travel as a single unit for frequencies above a critical 

limit or correspondingly for wavelengths bellow a critical value crit  . If crit  the total 

mass assumes  the twin  configuration  with  orbital  radius  proportional to the radius of 

gyration 2 = .    
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For the purposes of the present paper the main argument in favor of this model is that 

it explains the observed diffraction pattern for numerous types of radiation as we will see in 

the next section. Therefore, the twin particle model will be adopted as the standard model in 

this paper.  

The Schrödinger Equation 

Now consider the function ( ) ( )( ), exp 2x t i t  = −  where  t =   , the 

rotation speed of the particle with respect to the inertial frame, is constant. Clearly the 

function ( ),x t   belongs to the class of harmonic functions and consequently satisfies the 

wave equation [6]: 

                                                                  
2 2

2 2 2

1
0

x c t

  
+ =

 
                                                           (9)         

Where 2c  =  . Now since t i  = −   the equation (9) reads: 

                                                                 
22

2

2
0i

x t

  



  
−  = 

   
                                                (10) 

Φ

Ψ=∂Φ/ ∂t

Ψ
ρ

m/2

m/2

u

m/2

m/2

Energy 

Wavelength λcrit 

Single particle λ<λcrit 

Twin-particles λ>λcrit 

Fig.3. (a)The twin particle model subjected to corkscrew motion. (b) The critical 

wavelength shown in the black body energy spectrum. 

O O 
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The kinetic energy of the particle corresponding to rotation is a function of 

( )2 1 r u  = − , where 2r u = . Let us impose that the angular velocity of the particle 

with respect to the corkscrew, that is  , is limited to the interval 0 < 1r  . This means that no 

external energy is introduced into the particle-corkscrew system. Consequently, the maximum 

kinetic energy of the particle corresponding to the rotation is reached when the particle is 

tightly attached to the corkscrew tip 0r = and 2 /u  = . If 1r = and therefore 0 = , the 

particle is free to rotate with respect to the corkscrew tip but doesn’t rotate with respect to 

the inertial frame. The equation (10) can now be written as: 

2

2

1 2
0

1
i

x r u t

  



  
− = 

 −  
 

              Or with 2h mu =  we have the Schrödinger equation in a more general form 

suitable to the present approach: 

                                                                ( )
2

2
1 0

h
r i

m x t

  
− + =

 
                                                   (11) 

The parameter r  controls the particle rotation speed with respect to the inertial frame. 

If 1r =  the function   is constant in time, there is no wave motion associated with the 

particle. The particle moves along a linear path with velocity v u=  where u  is the velocity of 

the corkscrew tip. There is no connection between particle and corkscrew transferring the 

angular motion of the corkscrew to the particle, that is the particle do not rotate in the inertial 

frame.  

If 0r =  we have the other limiting motion. The particle is attached to the corkscrew 

tip, it moves with translation and rotation imposed by the corkscrew tip. The particle moves 

with linear and angular velocities, u and 2 /u   respectively.  

We can now impose a partial binding of the particle to the corkscrew tip, so that only 

a fraction of the corkscrew angular motion is transferred to the particle, as explained above 

with ( )2 1 r u  = − . If we take 1/ 2r = , that is the angular velocity of the particle with 

respect to the inertial fame is half of the angular velocity of the corkscrew tip, we obtain the 

classical Schrödinger equation: 

2

2
0

2

h
i

m x t

  
+ =

 
                                                       (12) 
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The Particle Hitting a Plane Wall  

Let us now consider the result obtained with the corkscrew model for the analysis of a 

classical problem. Consider a particle hitting a wall under the angle α (Fig.3). 

 

 

 

 

 

 

 

Let us assume that the trajectory after the impact is symmetrical in relation to the 

incident trajectory considering the normal at the point of impact. Let the triplets 0 0 0 ]  ,[ ,u  

and 1 1 1[ ], ,u    define the motion before and after the impact. For this case it is reasonable 

to assume that the angular and linear velocities,  andu remain constant, that is 0 1 =   

and 0 1u u u= = . This condition comes from the energy conservation principle applied to the 

translation and rotation motions. The pair  ( ),  can however vary being different in the 

incident and reflected trajectories. From the condition 0 1 =   we obtain: 

( )0 0 1 0 11u u     − = −  

With the difference 0 1
   = −  we may write: 

                                                        ( )
1 10 0

1

u
     = − −                                              (13) 

And with 0 1      = −   we have: 

( )
0 0

u


   


 = − −   

(u0,ω0,Ψ0) (u1,ω1,Ψ1) 

Fig.3. Particle hitting a plane   

α α 
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2

0

0

1
1          

u
f

f u


  


 −  = −  =

 
 
 

 

Now with 
0u c=  and 0 0 0

f f c = = we have: 

2

0 0

0 0

       
f

c f

 





 = −

− 
 

Now we have from the definition of the Planck’s constant:  

2

0

0

h

mf
 =  

Therefore   reads: 

( )
1

1

0

0 0 0

         
h

mc f

 


 

−
 = −

− +
 

But 0 0 1 1f f − = −  as assumed initially, therefore: 

( )
1 1

1 1 1 1 1

0 0

0 0

=     
h h

mc f mc f f

  


 

−
 = −

− +

 
 
 

 

 Noting that / /h h  =    the equation above reads: 

1

1

0

1

1     
h

mc f





 = −

 
 
 

 

 Now suppose that the angular velocity of the particle relative to the inertial frame 

after the collision is equal to zero, ie / 0d dt=  = . That is, the particle is free to rotate with 

respect to the tip of the corkscrew. In this case 1 1f = which means that the angular velocity 

of the particle with respect to the inertial frame vanishes. Therefore, the above expression 

reads: 

0

1

1
h

mc





 = −

 
 
 

                                                         (14)                                                     
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 The parameter /h mc  is the well-known Compton wavelength. It is reasonable to 

assume that the corkscrew pitch and, correspondingly, the wavelength decrease after the 

shock. Therefore 0  . According to the dynamics proposed in the present approach, the 

corresponding frequencies increase, that is 1 0  , which is consistent with equation (13). 

Now since 0 10 / 1   ,   is always positive and less or equal to /h mc . According to the 

present approach, the maximum possible deviation of the wavelength after the collision of 

the particle against a rigid wall is the Compton wavelength. This is the case if the particle is 

attached to the corkscrew tip before the collision, that is 0 0 = , and released from the 

support at the tip of the corkscrew after the collision. For this limiting case the speed of 

rotation of the particle relative to the support after the impact is ( )1 0 11 1u  = − .                       

The large electron hypothesis proposed by Compton can be reviewed in the context of 

the present theory [7] [8]. In fact, the standard model assumes the particle as a single unit 

with a variable diameter; our proposal splits the particle into two identical units orbiting 

around each other, for wavelengths beyond a critical value. Thus, the large electron is not an 

object, but is in fact the trajectory of two objects orbiting around a common center.  

                         

 The Double-Slit Experiment 

Diffraction is possibly the most important experiment for detecting the presence of 

waves propagating through a medium, but in principle, diffraction is not expected to show 

wave patterns associated with particles being expelled simultaneously through two slits. 

However, careful experiments show that elementary particles do actually behave like waves 

and exhibit the corresponding diffraction pattern [9 [10]. As will be shown below, this peculiar 

behavior can be explained with the particular motion of elementary particles proposed in this 

paper. The first necessary condition for the development of diffraction patterns associated 

with two streams of particles simultaneously exiting two slits, is that the particles move in the 

twin state [Fig.4]. This condition suggests that, after exiting the slits the particle’s wavelength 

increases together with the radius of gyration. Note that particles are assumed bounce off 

after colliding on the BB wall [Fig.5]. 
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Consider particle moving in the twin state. Let us analyze two typical cases:  

1. Particles move with maximum angular deviation. The corresponding configuration is 

that the angular displacement between two particles is an odd number of a quarter 

of a turn ( )2  –  1 / 4n  =
. 

2. Particles move in line with each other. For this case the angular displacement 

between two particles is an even number of a quarter of a turn ( )2 / 4n  =
.  

Suppose that two particles leaving the two slits in the wall AA with an appropriated time shift 

arrive almost simultaneously at the wall BB [Fig.5]. If they are in phase they will clash and will 

disperse randomly. Possibly only a small number of particles will be reflected from BB not 

enough to make it visible. The region corresponding to this event will remain black [Fig. 5(a)]. 

The reason is that the leading particle reflects from the wall BB and collides very close to the 

wall with the incoming particle. As the direction of rotation is reverted after the shock, the 

interaction is catastrophic. Now, if the particles hit the BB wall in phase opposition, as they 

are in the twin configuration it is possible for them to cross without colliding [Fig. 5(b)]. In this 

case the particles reflect back from the wall BB leaving the corresponding region bright 

Fig.4. Particles moving in the 

twin configuration.  

t 

t+Δt 
ρ 

u 

dΦ/dt 
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t.  

It is remarkable how the angular position of the corkscrew trajectory determines the 

conditions of interaction between the particles leading to a smooth reflection or a catastrophic 

process blocking all possible reflection. Although the underlying phenomenological process is 

quite different from wave propagation, the respective result of the double slit experiment is 

equivalent.  

 

 

 

 

 

 

With these assumptions, the interference conditions follow the classical approach. The   

difference between the trajectories of the particles that leave the A-A wall slit and arrive 

simultaneously at the wall B-B is given by ( )sind  [Fig.6]. Since the particles travel with 

velocity equal to u, the corresponding time shift is: 

( )
u

d
t

sin
=  

Fig.5. The double-slit experiment. (a) Particles moving in phase causing a catastrophic 

event near wall BB; (b) Coherent motion, particles reflect back from the wall BB. 

clash

H H

B B

A A

In phase
Out of phase

(a) (b) 

 

α 

d 

P 

Bright fringe 

Fig.6. Position of the fringes in 

the diffraction experiment  
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Now, by equation (1), the time required for a particle to complete an angle of rotation  

 is:  

1

1
t

u u




 = 

−
 

From the above equations sin(α) is immediately obtained: 

      ( )
1

sin
1d u





= 

−
                                                          (15)                                    

Now if the particles arrive in-phase at the B-B wall then   can be written as 

2n = , n integer. So, we get: 

( )
1

sin
1 2

n

d u

 



=

−
                     n=1,2,3…  black fringes 

If the particles are in phase opposition, then the corresponding angle α is given by: 

( ) ( )
1

sin 2 1
1 4

n
d u

 



= −

−
              n=1,2,3…  bright fringes 

Clearly, for the fundamental case with the particle attached to the tip of the corkscrew, 

0 = , the above equations reduce to the classical expressions: 

( )sin
2

n

d

 
 =         and          ( ) ( )sin 2 1

4
n

d

 
 = −           with n=1,2,3… 

corresponding to the black and bright fringes respectively.  

Equation (15) leads to a remarkable conclusion. For very small values of  , the angular 

shift given by ( )sin  is acceptable. But if the angular velocity of the particle relative to the 

corkscrew increases, the values obtained for ( )sin  become unacceptable. This means that if 

the particle is allowed to rotate freely with respect to the corkscrew, then no interference 

pattern can be observed.  

Particles leaving the slits without rotation with respect to the inertial reference frame 

do not present diffraction patterns. Only particles with vortex motion will produce the 

diffraction fringes as observed in the experiments.  
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One of the most important conclusions obtained with the present approach is that a 

necessary condition for the formation of the diffraction pattern is that particles must be in the 

twin configuration moving with linear velocity u  and angular speed  about an axis parallel 

to u . Note that two particles are needed to induce the diffraction phenomena as proposed in 

this paper.  

Diffraction patterns for elementary particles. Elementary particles in the twin-configuration 

moving simultaneously with translation and rotation at very high speeds can exhibit diffraction 

patterns like those observed in wave motion. 

 

 

 

 

 

 

 Additionally, the model proposed here suggests a plausible solution for the 

annihilation of the diffraction phenomenon when an instrument to detect the motion of 

particles is coupled to one of the slits. As stated earlier, the particles coming out of the slits 

are in the twin configuration.  The instrument interacts with the particles coming out of the 

corresponding slit and breaks the symmetry. The gyration radius of the particles in the two 

beams are no longer equal [Fig.7].  Therefore, the probability of particles in the twin state 

interacting is very low. The diffraction phenomenon is broken, and the corresponding pattern 

is no longer observed. 

The diffraction phenomenon described above consider the interference of particles 

reflected off a wall. If the particle after the collision remains stuck to the wall, the diffraction 

pattern could be reversed. Segments of the wall where particles arrive in phase tend to be 

bright due to superposition of shocks at the same location. The regions where the impact 

occurs randomly do not show any particular change. 

FINAL COMMENTS 

The corkscrew kinematics introduced in the previous sections is actually a classical 

approach to rigid body dynamics. The corkscrew is a single mechanism with two degrees of 

freedom, namely a translation x  and a rotation  . These two motions are not independent, 

in fact they are coupled through the corkscrew pitch  . If we place a particle on the tip of the 

ρ1  λ1 
ρ2  λ2 

Fig.7. Particles moving in the twin 

state with different gyration radii. 
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corkscrew and let it rotate with respect to the corkscrew, a new degree of freedom will be 

introduced that we call  . It was shown that the dynamics analysis of a particle attached to 

the tip of the corkscrew, that is with constant = , leads to the generalization of Plank’s 

parameter. With the classical definition of energy E hf= it is immediately obtained  = . 

This relation is of capital importance for the dynamics of particles. It also implies that the 

kinetic energy of a particle moving as if it were attached to the tip of a corkscrew converges 

to a minimum. The particle dynamics proposed in the first sections of this paper is in 

accordance with the theoretical foundations of the non-relativistic classical quantum 

mechanics.  

Clearly, the equivalence between wavelength and radius o gyration leads to the 

conclusion that particles at low speeds, correspondingly large wavelengths, must have a 

proportionally large radius of gyration. This condition leads to an impossible mass distribution 

pattern if the particle is considered as a single body. The solution to settle the dependence of 

the radius of gyration with the velocity was to consider the particle as consisting of two similar 

units symmetrically arranged at the ends of the diameter of the circle whose radius is the 

radius of gyration. It is the twin particles configuration that is a new geometry proposed here. 

It is remarkable that this configuration in addition to solving the issue of mass distribution is, 

I would say, a necessary condition to explain the diffraction phenomenon observed in the 

classical experiments.  

The theory presented in this paper does not contradict the basic phenomenological 

observations or the main theoretical developments supporting the scientific achievements in 

quantum mechanics. It is, however, a model that can better explain the characteristic patterns 

observed in the classical diffraction experiments. Indeed, diffraction patterns can be explained 

with the particle rotation which is a key component of corkscrew dynamics. Rotation 

associated with the twin configuration can generate the necessary positive or negative 

interference processes to explain the bright and dark fringes obtained in diffraction 

experiments. Particularly important is the annihilation of the diffraction effect when a 

detector is connected to one of the slits. The twin configuration presents a consistent solution 

for this event. Note that the explanation for the observed “diffraction patterns” in particle 

dynamics cannot be attributed strictly to wave motion. Particle dynamics reproduce the 

diffraction patterns obtained with phenomenon that behave like waves, but particles are not 

waves. That is, diffraction cannot be attributed exclusively to wave motion, as is commonly 

admitted. The term wave-particle commonly used in particle dynamics should be avoided, 

particles are not waves, particles are simply particles. Particles and waves can reproduce 

similar outputs in some specific experiments, but they keep their own identity. 
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In the previous sections, we have assumed that the mass splits into two particles, but 

there is no difficulty in assuming that mass splits into more than two elements (Fig.8). The 

density of each sub-particle can, however, increase or decrease depending on the geometry 

of the new configuration. So far, we have found no convincing reason to say that the density 

will increase or decrease. Note that the four sub-particles configuration does not present any 

additional difficulty to the explanation proposed for the formation of diffraction patterns. It is 

also possible that for a given critical value of the radius of gyration crit each sub-particle 

assumes an independent path. In this case the new particles can be classified into an 

appropriate category. If we generalize this idea and admit that up to a given limit the division 

process can be reproduced, possibly the different categories of particles all or almost all have 

a single origin, a mother particle existing at the beginning of our universe.  

The theoretical framework proposed in this paper suggests that, for a stationary 

universe, all the mass would be displaced at very large distance from the center, generating a 

“symmetrical universe”. The universe would turn into a huge number of massless skeletons, 

each bounded by two huge stationary concentration of cold mass at zero degrees Kelvin. 

Similar reasoning applies to kinetic energy, except that the energy would be concentrated in 

only one place for each pair of cold masses. Possibly, both dark matter and dark energy are 

compatible with the model proposed in this paper.  

The corkscrew dynamics introduced here provide a solid basis for developing a 

statistical approach to particle physics. Certainly, there are some phenomena that still need 

to be analyzed using the corkscrew dynamics. But it is always important to present some basic 

results before expanding the theory. As explained in the appendix B, it is possible to imagine 

an experimental setup that can test the correlation between the radius of gyration and the 

wavelength. Certainly, such an experiment could definitely decide whether the present 

approach represents what is actually happening at very small scales. Although this paper is 

about hundred years behind schedule, I hope that the ideas presented here can spark 

meaningful discussions about how particles move, with special attention to wave motion.  

ρ

t





Fig.8.Original particle splits 

into four sub-particles 
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Appendix A 

The relation between   and   can also be derived following a different path. Let 0 =  with 

equation (1) it is immediately obtained ut = . This is the angular velocity of the 

particle relative to the inertial frame. The kinetic energy corresponding to rotation is given by: 

2
1

2
RE I

t

 
=  

 
 

Now with 2I m=  where   and m  are the radius of gyration and the mass of the particle 

respectively, the equation above gives: 

2
2

2

1

2
R

u
E m


=  

Or 

2 2
1 1

2 2
R

u
E m u hf

 


  

   
= =   

   
 

Now with h m u= the Planck’s constant, f u =  the corkscrew angular frequency and 

=k we obtain: 

21

2
RE hfk=                                                                                                         (1.a) 

Let us derive the energy corresponding to the translation motion imposed by the corkscrew 

angular displacement: 

21 1 1

2 2 2
TE mu mu f hf= = =                                                                               (2.a) 

The total kinetic energy can now be written combining equations (1.a) and (2.a): 

  ( )21
1

2
T RE E hf k+ = +  

But hf E= , according to De Broglie’s proposal, and since T RE E E+ =  it is immediate that 

k=1 that is  =  or 2 =  
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Appendix B 

The corkscrew model suggests possible mechanisms for selecting different colors through an 

adequate design of “color-cells”. Roughly speaking, it would be a mechanism similar to the 

one used to detect different sound frequencies. Two types of design are presented, both 

supported by the same principle. Cells interacting with incoming radiation may be able to 

detect the respective radius of gyration, as shown in Fig. (B-1). Each segment of the membrane 

responds to a specific dimension of the radius of gyration, that is, to a specific color. A conical 

membrane may be suitable to perform the required function. A cylindrical membrane would 

allow the radiation to travel without any interaction. No color could be detected. Other types 

of configurations are also possible as shown in Fig.B-2. Individual cells with different 

diameters. Each one is capable of detecting a specific color, that is, a certain radius of gyration. 

If, however, all cells have the same diameter, then only a specific color could be detected or 

no color at all if ρ0 is greater than all radii of gyration corresponding to the incident particles. 

ρ1 ρ
2
 

ρ
3
 

ρ 

ρ
0
 

Fig.B-2. (a) Detectors network. This geometry allows for detecting all radiations with 

gyration radius ρ
min

<ρ<ρ
max

 (b) No radiation can be detected all particles go through all 

detectors. No interaction is possible. 

  

(a) (b) 

 

ρ
max

 

ρ
1
 

ρ2 

ρ1

ρ1=2πλ1

ρ2

ρ1=2πλ2

 

ρ
1
 

ρ
2
 

ρ0 

ρ0 

Fig.B-1. (a) Conical membrane. This geometry allows for detecting all radiations 

with gyration radius ρ
min

<ρ<ρ
max

 (b) No radiation can be detected all particles go 

through the tunneling geometry of the membrane. 

(a) (b) 
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The above discussion refers to possible geometries and clusters sensitive to the geometry of 

the particles as proposed here. They could be possibly found in living organisms. If it were 

possible to build suitable artificial membranes as proposed above, the present theory could 

be tested.  


