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Abstract 

In this article we find the thermodynamics of some large N particles systems and some small N particles classical 

systems using micro canonical ensemble. Small N particle systems are seldom done in textbooks, since statistical 

mechanics(SM) systems work for large N systems. We show that small N systems will help the students to get an 

insight about the phase space and also the computation of microstates. 
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INTRODUCTION 

In statistical mechanics we use ensemble method to find thermodynamic properties of a system 

(Huang, 2009; Pathria, 2016).  Three types of ensembles- micro canonical(MCE), canonical(CE) 

and grand canonical ensemble (GCE) are used. Examples of finding thermodynamics of classical 

systems using MCE is very rare because of its inherent difficulties (Gross, 2001; Hill, 1986; 

Palma & Riveros, 2021; Park, Kim, & Yi, 2022; Rugh, 1997; Tobolsky, 1964). We in this article 

give some examples for finding the thermodynamics for large number(N) of particles and also for 

some small number of particle systems. MCE is a collection of systems with constant energy, 

constant number of particles and constant volume.  For finding thermodynamics in MCE, we 

calculate the number of available states, 𝛺,in phase space for the particles to occupy in the 

system. From 𝛺,using the  Boltzmann relation: 

𝑆 = 𝑘𝑙𝑛𝛺 

 

entropy ‘S’ is calculated and from entropy all other thermodynamic quantities are obtained, 

where ‘k’ is the Boltzmann’s constant.  Here we give three examples for large N and five 

examples for small N. 

Microstates In Phase Space 

Boltzmann imagined phase space as a 6-dimensional space with N particles which will 

have N trajectories. But according to Gibbs, if there are N particles, we must imagine it as a 6N 

dimensional space which have only one trajectory. This Gibbsian model is followed in statistical 

mechanics.   So for N particles moving in 

 

1. 1 D Cartesian space, the phase space is 2N dimensional 

2. 2 D Cartesian space, the phase space is 4N dimensional 

3. 3 D Cartesian space, the phase space is 6N dimensional 

 

Sometimes we will have a doubt, why we use momentum as a coordinate. Momentum 

tells us more about the behavior of the system than velocity alone. Since mass is presumed 

constant, differentiate momentum with respect to time and you have force. From this you can 

derive work done, and from this you can derive potential energy. You can also express kinetic 

energy in terms of momentum. In short momentum and position are the directly observable 

properties of an object.  
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Number of States in Cartesian Space  

We told you that finding 𝛺 is the target in MCE. Before going to phase space let us 

imagine, how we will find 𝛺 if it is Cartesian space.  

 

 

 

 

 

 

 

 

Figure 1. Method to Find Number of States in Cartesian Space for Regular Shaped Object 

 

Consider an area as given in Figure 1. It consists of 4 rectangles of equal area A. Total 

area is 4A. Then the number of areas or in the language of statistical mechanics  ``states'' to 

occupy  will be given by   

𝛺 =
4𝐴

𝐴
= 4 

 

where A is the minimum area required by an individual state. Here we get the number of states as 

4. Suppose our area is having an irregular shape, then we have to find a small area dA and take 

the sum of all areas or mathematically we have to integrate and get          

𝐴 = ∫𝑑𝐴 

 

Then the number of states,       𝛺 =
∫𝑑𝐴

𝛿
   where ‘𝛿’ is the minimum area.If the Cartesian 

space is 3D,   𝛺 =
∫𝑑3𝑥

𝛥
  where ‘𝛥’ is the minimum volume. 

Number of States in Phase Space 

After understanding the method to find 𝛺 in Cartesian space, let us move to phase space. 

In phase space the total number of microstates 
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𝛺 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑝ℎ

ℎ3𝑁
 

where 𝑉𝑜𝑙𝑢𝑚𝑒𝑝ℎ is the phase space volume given by the product of spatial volume and 

momentum volume (Pathria, 2016). If the energy doesn't contain position coordinate, both 

volumes are separable and then we can write  

𝛺 =
𝑉𝑁𝑉3𝑁
ℎ3𝑁

 

where 𝑉𝑁 is the spatial volume available for N particle, ℎ3𝑁is the minimum volume and𝑉3𝑁 is the 

volume of  3N dimensional momentum sphere. Now we will apply this to three large N 

systems.The first example is given in many textbooks, but for continuity we repeat the same 

(Pathria, 2016). 

Systems with Large N 

Nonrelativistic Free Particles 

We have (Pathria, 2016) 

𝑉3𝑁 =
𝜋
3𝑁

2 𝑅3𝑁

(
3𝑁

2
) !

 

For free particles, energy ,  𝜀𝑖 =
𝑝𝑖

2

2𝑚
.  So the radius of the momentum sphere, 𝑅 = 𝑝 =

√2𝑚𝐸 = 𝑅 

Then, 

𝑉3𝑁 =
𝜋
3𝑁

2 (2𝑚𝐸)
3𝑁

2

(
3𝑁

2
) !

 

The total number of microstates,                  

𝛺 = (
𝑉

ℎ3
)
𝑁 (2𝜋𝑚𝐸)

3𝑁

2

(
3𝑁

2
) !

 

By Boltzmann equation 

𝑆 = 𝑘𝑙𝑛𝛺 
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𝑆 = 𝑘𝑙𝑛 [(
𝑉

ℎ3
)
𝑁 (2𝜋𝑚𝐸)

3𝑁

2

(
3𝑁

2
) !

] 

 

To avoid Gibb’s paradox (Pathria, 2016) we will divide 𝛺 by 𝑁!. Then 

𝑆 = 𝑘𝑙𝑛 [(
𝑉

ℎ3
)
𝑁 (2𝜋𝑚𝐸)

3𝑁

2

(
3𝑁

2
) ! 𝑁!

] 

 

Using the Stirling's approximation for large N values and using  

1

𝑇
= (

𝜕𝑆

𝜕𝐸
)
𝑁,𝑉

,                    𝐸 =
3

2
𝑁𝑘𝑇 

Using                       
𝑃

𝑇
= (

𝜕𝑆

𝜕𝑉
)
𝑁,𝐸

 , 𝑃𝑉 = 𝑁𝑘𝑇 

 

Relativistic Massless Particle 

For a relativistic mass less particle, the single particle energy is given by 

𝜀𝑖 = 𝑝𝑖𝑐 

 

The radius of the momentum sphere 

𝑅 =
𝐸

𝑐
 

 

The number of micro states is (Pathria, 2016) 

𝛺 =
𝑉𝑁

(3𝑁)!
(
8𝜋𝐸3

𝑐3
)

𝑁
1

ℎ3𝑁
 

 

Avoiding Gibb’s paradox                            𝑆 = 𝑁𝑘 [𝑙𝑛 (
8𝜋𝑉𝐸3

ℎ3𝑐3
) − 3𝑙𝑛3𝑁 − 𝑙𝑛𝑁 + 4] 

 

Using the standard expressions, we get       

𝐸 = 3𝑁𝑘𝑇 
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𝑃𝑉 =
𝑁𝑘𝑇

𝑉
 

 

Harmonic oscillator 

𝛺 =
1

3𝑁!
(
𝐸

ℏ𝜔
)
3𝑁

 

𝑆 = 3𝑁𝑘𝑙𝑛
𝐸

3𝑛ℏ𝜔
+ 3𝑁𝑘 

 

Entropy is extensive and hence no Gibb’s paradox. So there is no need to divide 𝛺 by 𝑁!.   

𝑈 = 3𝑁𝑘𝑇 

𝑃 = 0 

Small N Systems 

Generally, SM is applied to large N systems. So in textbooks small N systems are not 

dealt with. But if the system is chaotic small dimensional systems show ergodic behavior and 

hence we can apply statistical mechanics to study the system (Bannur, Kaw, & Parikh, 1997; 

Bannur & Thayyullathil, 2009).  Besides the calculation of 𝛺 for small N systems gives a visual 

effect for the learners of SM. In this section we will find internal energy U only, the remaining 

thermodynamics is left for the reader to calculate. 

 

Free particle bounded between the limits -L to +L 

For a free particle 𝐸 =
𝑝2

2𝑚
. Area in phase space will be a rectangle. We can compute the 

full area directly as given below.  

                                          Area    =∫ (∫ 𝑑𝑝
√2𝑚𝐸

−√2𝑚𝐸
)𝑑𝑞

𝐿

−𝐿
 

                                                                        =4𝐿√2𝑚𝐸 

Hence                     𝛺 =
4𝐿√2𝑚𝐸

ℎ
 

Entropy                  𝑆 = 𝑘𝑙𝑛
4𝐿√2𝑚𝐸

ℎ
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So                         𝑈 =
𝑘𝑇

2
 

Two Free Particles 

For two free particles 𝐸 =
𝑝1

2

2𝑚
+

𝑝2
2

2𝑚
 

where p1 and p2 are momenta of the two particles m be the mass of the particles. This 

system forms an elliptical trajectory and hence we will have four equal areas in each quadrant.  

Let area of one quadrant of phase space = ∫∫𝑑𝑝1𝑑𝑝2 . Here p1 will vary from 0 to √2𝑚𝐸 − 𝑝22  

and p2 will vary from 0 to √2𝑚𝐸.  

So the total area of the phase space = 4 ∫ ∫ 𝑑𝑝1𝑑𝑝2
√2𝑚𝐸−𝑝22

0

√2𝑚𝐸

0
 

                                                                    =2𝜋𝑚𝐸 

The number of microstates,  𝛺 =
2𝜋𝑚𝐸

ℎ
  where h is the Planck constant.  

The entropy,                                             𝑆 = 𝑘𝑙𝑛𝛺 = 𝑘𝑙𝑛
2𝜋𝑚𝐸

ℎ
 

𝑈 = 𝑘𝑇 

 

This can be extended to any number of free particles. Thus we can conclude that for free 

particles the general expression for internal energy is 

𝑈 =
𝑁𝑘𝑇

2
 

A Freely Falling Particle 

For a freely falling body 𝐸 =
𝑝1

2

2𝑚
+𝑚𝑔𝑞1 

where 𝑞1 is the initial position.  Since we are interested in finding the internal energy, which 

doesn't depend on parameters other than T, we take constants as unity.  Then  𝐸 = 𝑝1
2 + 𝑞1. The 

trajectory in phase space will be a parabola and hence total phase space are twice the area in first 

quadrant. The limiting values of  𝑞1 is √𝐸 and 𝑝1is 𝐸 − 𝑝1
2. So the area 

 

= 2 ∫ (∫ 𝑑𝑞1
𝐸−𝑝1

2

0
)𝑑𝑝1

√𝐸

0
 

𝛺 =
4

3ℎ
𝐸
3

2 
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Entropy,                                                 

𝑆 = 𝑘𝑙𝑛𝛺 = 𝑘𝑙𝑛
4

3ℎ
𝐸
3

2 

𝑈 =
3𝑘𝑇

2
 

A Harmonic Oscillator         

 For a harmonic oscillator,  𝐸 =
𝑝1

2

2𝑚
+

𝐾𝑞1
2

2
 

where 𝑝1and 𝑞1 are momentum and position respectively. K is the spring constant and m is the 

mass of the particle.  Taking the constants  as unity,  we will get 𝐸 = 𝑝1
2 + 𝑞1

2 . This system 

forms an elliptical trajectory and hence we will have four equal areas in each quadrant.  Let area 

of one quadrant of phase space ∫∫𝑑𝑝1𝑑𝑞1.  Here p1 will vary from 0 to √𝐸 − 𝑞12  and 𝑞1  will 

vary from 0 to √𝐸.  So the total area of the phase space, 

                                                                      A = 𝜋𝐸 

  

The number of microstates,  𝛺 =
𝜋𝐸

ℎ
   and we get 

𝑈 = 𝑘𝑇 

 

A Quartic Oscillator 

For a pure quartic oscillator(Suresh, Damodaran, & Udayanandan, 2016),𝐸 =
𝑝2

2𝑚
+

𝐾𝑞4

2
 

.Considering the constants as unity, we get 𝐸 = 𝑝2 + 𝑞4. Here, Area = 4 * Area of first quadrant. 

Solving we get 

𝛺 = 𝐶𝐸
3

4 

 

where C is a constant which includes the value of definite integral. Entropy 

𝑆 = 𝑘𝑙𝑛𝛺 = 𝑘𝑙𝑛𝐶𝐸
3

4 

So                                                           𝑈 =
3𝑘𝑇

4
 

 

CONCLUSIONS 
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In this article we applied the technique of MCE in finding the microstates and hence obtaining the 

thermodynamics. We showed that small number systems also give the exact thermodynamics, 

besides giving a visual picture of calculating the microstates. We hope such examples will help 

both the students and the teachers in teaching MCE effectively. 
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