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Abstract 

When deriving the equation describing the transverse motion of a one-dimensional vibrating elastic string, 

introductory physics textbooks often assume constant tension and/or small amplitude vibrations. 

However, these simplifying assumptions are not only unnecessary, but they overlook the elastic nature of 

the tension and yield an inconsistent derivation of the potential energy density. Because of these 

assumptions, the derivation of the wave equation and the potential energy density use two different 

levels of mathematical approximation. In addition, students often get confused as of how a string can 

carry elastic potential energy if the underlying assumption is that the tension is constant. In this work, we 

present a mathematically consistent derivation of the wave equation and potential energy density for the 

vibrating string. Our approach is adequate for physics and engineering introductory courses. We 

emphasize throughout the derivations the role of elasticity and we propose a simple experiment where 

students can use wave theory to predict the elastic properties of strings.  We also use our framework to 

illustrate under which conditions longitudinal waves can be neglected for strings that obey Hooke’s law 

of elasticity. We show that a small transverse amplitude vibration does not immediately justify neglecting 

longitudinal motion. 

Keywords: Wave equation, waves on a string, transverse waves 

  



European J of Physics Education                Volume 13 Issue 2 1309-7202                   Argudo & Oh 

 

 11  

INTRODUCTION: WAVES ON A STRING 

In 1959, J.B. Keller (Keller, 1959) noticed that strings made of a “perfectly elastic” material can 

undergo pure transverse vibrations. For a perfectly elastic material, the tension on the string is 

directly proportional to the stretch of the string, such that at zero tension the string has zero 

length1. Therefore, having a string made of a perfectly elastic material is a sufficient condition for 

transverse motion that does not require further assumptions (Keller, 1959; Antman, 1980; Luke, 

1992). But over the years, it seems that the power of this discovery has been overlooked by the 

physics education community. Using Newton’s Laws and some basic knowledge of partial 

derivatives popular lower division undergraduate textbooks guide students through the 

derivation of the linear wave equation that describes the motion of a vibrating string. But those 

undergraduate derivations often invoke unnecessary assumptions such as constant tension in 

the string or a small vibrations approximation (Walker, Halliday, & Resnick, 2018; Giancoli, 2020; 

Katz; Knight, 2016; Serway & Jewett, 2019; Tipler & Mosca, 2007; Alonso & Finn, 1983; Wolfson 

& Richard, 2011; French, 2003; Shankar, 2014)2.   

We are not the first ones to have taken notice of the problems with the current 

undergraduate derivations and alternatives have been suggested (Clelland & Vassiliou, 2013; 

Yong, 2006). But although correct approaches to the derivation of the linear wave equation in an 

elastic string can be found in the literature, these explanations are often beyond the 

mathematical knowledge possessed by students taking introductory calculus-based physics 

courses. In addition, students in introductory courses are often asked to perform experiments of 

transverse standing waves on a string3 where it is evident that the waves undergo large amplitude 

displacements, yet students are instructed to study such experiments using the ‘linear small-

amplitude theory’ that they have seen in their textbooks. Therefore, we see the need to have a 

simple, yet rigorous derivation at the introductory level that clearly identifies the assumptions of 

pure transverse motion while simultaneously connecting the theory to experiments that can be 

done in the undergraduate lab.   

A second point that we want to address in this paper is the inadequacy of the current 
undergraduate derivations of the potential energy density. A common misconception that 
students have regarding the potential energy of transverse waves in an elastic string is: ‘just like 
a simple harmonic oscillator, maximum potential energy of a wave occurs when the kinetic energy 
is a minimum’. As addressed in (Ng, 2010), this incorrect assertion comes from trying to obtain 
the potential energy density from a model that treats every string element as an ‘independent’ 
oscillating mass. The ‘independent’ oscillating mass model is widely used because it reproduces 
the correct result for the average total energy per unit wavelength, but at the expense of 
erroneously leading students to think that the energy density on the string is a constant. The 
‘independent’ mass oscillating model cannot explain how energy can propagate in a travelling 

 
1Perfectly elastic materials are not the same as linearly elastic. See section (5). 
2These sorts of assumptions can also be found in physics and math textbooks that are often used at upper division 
undergraduate and graduate level. See for example (Garret, 2020; Myint U. & Debnath, 2007; Lee & W., 1988).  
3 The experiments often use a slinky or soft elastic strings. 
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wave (Ng, 2010).  Unfortunately, this incorrect model is still presented in the literature (Giancoli, 
2020; Katz; Ryan, Neary, RInaldo, & Olivia, 2019; Ling, Sanny, & Moebs, 2016; hyperphysics, 
2022). Other popular textbooks either skip the topic of potential energy density altogether 
(Knight, 2016; Tipler & Mosca, 2007; Young & Freedman, 2016) or omit the derivation but show 
the final result (Walker, Halliday, & Resnick, 2018; Serway & Jewett, 2019). This is unfortunate, 
since as educators we should avoid the handwaving expression “it can be shown”, and 
derivations should always be presented when possible. Finally, there is a set of undergraduate 
sources that derive the potential energy based on a correct physical approach of the string’s 
stretching, but regularly those derivations assume a constant tension along the string and a 
second-order expression for the change in length of the string (French, 2003; Shankar, 2014; 
Fowler; Salsa, 2008; Caamano Withall & Krysl, 2016). These assumptions are not only 
unnecessary but quite confusing. First, the constant tension assumption is contradictory as any 
change in length of a string will result in some change in tension. Second, the derivations are 
mathematically inconsistent. The second-order expression for the string’s length is only used 
when deriving the potential energy density, but the change in length is neglected in the rest of 
the model while deriving the linear wave equation. These two remarks may be familiar to 
instructors and the astute physics students. In fact, students who are critical and deep thinkers 
can be found among those who find such derivations unsatisfying. In this paper we present an 
alternative derivation of the potential energy density that uses the definition of the elastic 
potential energy (generalized Hooke’s Law). Our approach is simple, straightforward, and 
suitable for an introductory physics course.  

 
We have organized our paper as follows. In section (2) we define the general features of 

a model for waves on an elastic string. We introduce the concepts and assumptions that are 

shared by the current undergraduate derivations and our new proposed approach. In section (3) 

we reproduce an example of current undergraduate derivations for the wave equation and the 

potential energy density assuming small vibrations and constant tension. We highlight the points 

that can lead to student’s confusion and misunderstanding. In section (4) we present our new 

mathematically consistent approach that is meant to remedy the issues we highlight in section 

(3). We consider strings made of linear elastic materials, and clearly identify under which 

conditions waves can be approximated as purely transverse. In section (5) we propose a low-cost 

experiment where students will quantitatively explore the elastic properties of the string.  

 

GENERAL MODEL FOR TRANSVERSE WAVES ON A STRING 

The @slinky, ropes, wires, yarn, cables, and rubber bands are commonly found in physics 

classroom demonstrations and laboratory activities. If certain conditions are met, these 

materials, and many others, can be effectively described using a one-dimensional string model 

(O'Reilly, 2017). In this section, we focus on the features of the string model that are relevant to 

the study of transverse vibrations in an introductory calculus-based physics course.  This 

description is shared by current undergraduate derivations (section 3) and our new proposed 

approach (section 4).  
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We think of the string as a continuum and homogeneous object where its length is much 

larger than its cross-sectional area (one-dimensional object).  The strings mass distribution can 

be characterized mathematically by a uniform linear mass density function 𝜇𝑜, where the integral 

of 𝜇𝑜 over the length of a string’s segment gives the mass of the segment4.  The string is assumed 

to be elastic5, and conservation of angular momentum implies the tension is tangential to the 

string. The string has negligible area moments of inertia such that the string carries no resistance 

to bending and torsion6. Hence, the only mode of deformation for the elastic string is the stretch 

caused by tension. Finally, the weight of the string, friction, air drag, and any other dissipative 

forces are neglected in the model. 

Now, let us consider a string tautly stretched between two posts (Figure 1). The ends of the string 

are fixed to the posts. We construct a x-y coordinate system and set the origin at the left post 

(𝑥 = 0, 𝑦 = 0) and lay out the x coordinate along the line directly connecting the two posts, so 

that the post on the right is located at the position (𝑥 = 𝐿𝑜 , 𝑦 = 0). Figure 1a displays the string 

in the equilibrium straight horizontal configuration where no waves are present. In the 

equilibrium configuration the string is under tension 𝑇𝑜  and stretched to a length 𝐿𝑜 that is 

greater than its natural unstretched length 𝐿̂. Figure 1(a) also shows in red a small element of 

mass 𝛿𝑚 and length 𝛿𝑥. The string is set to vibrate by introducing a disturbance such as plucking 

it. Figure 1b shows a sample wave snapshot on the deformed configuration where the string is 

stretched to a length 𝐿 > 𝐿𝑜. Figure 1(b) also shows the red element of mass 𝛿𝑚, that has been 

stretched to a length 𝛿𝑠. In Figure 2 we zoom into the mass element 𝛿𝑚 in the string’s deformed 

configuration. Without any loss of generality, we define the coordinates a point A to be [𝑥, 𝑦(𝑥)] 

and the direction of the tension at point A to be determined by the angle 𝜃𝐴= 𝜃(𝑥). Then point B 

will have coordinates  [𝑥 + 𝛿𝑥, 𝑦(𝑥 + 𝛿𝑥)], and the direction of the tension will be characterized 

by the angle 𝜃𝐵= 𝜃(𝑥 + 𝛿𝑥): 

We apply Newton’s law of motion in the horizontal and vertical directions: 

𝑇(𝑥) cos 𝜃𝐵 − 𝑇(𝑥) cos 𝜃𝐴

=  𝛿𝑚𝑎𝑥,                                                                                                                      Eq [1] 

𝑇(𝑥 + 𝛿𝑥) sin𝜃𝐵 − 𝑇(𝑥

+ 𝛿𝑥) sin 𝜃𝐴 =  𝛿𝑚𝑎𝑦 ,                                                                                              Eq [2] 

replacing 𝛿𝑚 = 𝜇𝑜𝛿𝑥, 𝜃𝐴= 𝜃(𝑥), and 𝜃𝐵= 𝜃(𝑥 + 𝛿𝑥): 

𝑇(𝑥 + 𝛿𝑥) cos 𝜃(𝑥 + 𝛿𝑥) − 𝑇(𝑥) cos 𝜃(𝑥)

𝛿𝑥
= 𝜇𝑜𝑎𝑥,                                                                      Eq [3] 

 
4 Due to local conservation of mass along the string, as the string deforms the linear mass density will change. 
5 Different constitutive models can be used to describe the elastic nature of a string: perfectly elastic, linear elastic, 
hyper-elastic, etc (O'Reilly, 2017). In the current paper we do not discuss the dynamics of inextensible strings. 
6 This detail can be omitted when presenting it to an introductory physics audience without background on 
strength of materials. 
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𝑇(𝑥 + 𝛿𝑥) sin𝜃(𝑥 + 𝛿𝑥) − 𝑇(𝑥) sin 𝜃(𝑥)

𝛿𝑥
= 𝜇𝑜𝑎𝑦 .                                                                       Eq [4] 

In the limit as the length of the string element vanishes 𝛿𝑥 → 0, the left-hand side of the above 

equations reduce to a spatial derivative: 

𝜕(𝑇(𝑥) cos 𝜃(𝑥))

𝜕𝑥
= 𝜇𝑜𝑎𝑥,                                                                                                                    Eq [5] 

𝜕(𝑇(𝑥) sin 𝜃(𝑥))

𝜕𝑥
= 𝜇𝑜𝑎𝑦 .                                                                                                                     Eq [6] 

Up to this point we have not invoked any assumption regarding the behavior of the string, the 

two expressions above are true for the dynamics of any one-dimensional string. The above 

equations describe the motion in the horizontal and vertical direction, but they require knowing 

the physical law describing 𝑇(𝑥).  

Geometric Description of Pure Transverse Motions 

Consider the string in Figure 1. If all points along the string undergo motion perpendicular to axis 

of the string (horizontal axis), then the wave is said to be purely transverse. Consider a small 

element of mass 𝛿𝑚 undergoing pure transverse motions as shown in Figure (2). The total stretch 

of this mass element is given by 𝛿𝑠 − 𝛿𝑥, where the length of the distorted element is given by: 

𝛿𝑠 = √𝛿𝑥2 + 𝛿𝑦2 = 𝛿𝑥√1 + (
𝛿𝑦

𝛿𝑥
)
2

.                                                                                               Eq [7] 

In the limit as 𝛿𝑥 → 0, for an infinitesimally small element of initial undeformed length 𝑑𝑥, the 

final deformed length would be given by 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 = sec θ(x) 𝑑𝑥. 

We conclude this section by stating the two conditions for pure transverse motion on a string:  

(1) The geometric requirement:    

𝑑𝑥 = cos 𝜃(𝑥) 𝑑𝑠.                                                                                                                                   Eq [8] 

(2) From the dynamics equation of motion Eq (5), the horizontal component of the acceleration 

is zero, if and only if the horizontal component of the tension (𝑇𝑥 = 𝑇(𝑥) cos 𝜃(𝑥)) is a constant 

independent position. 
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Figure 1. A flexible string of natural unstretched length 𝐿̂ is fixed in space to poles. Part (a) shows the string in the 
static equilibrium configuration without any waves. The string is under a tension 𝑇0, and it has been stretched to an 

equilibrium length 𝐿0 larger than 𝐿̂. A small element of mass 𝛿𝑚 and length 𝛿𝑥 from the string is colored in red. 
Part (b) shows a snapshot of a wave present in the string’s deformed configuration. The wave disturbance leads to 

further local stretching as depicted by the new extended length 𝛿𝑠 of the mass element 𝛿𝑚. The string’s total 
length in the deformed state is 𝐿. 

 

 

 

 

(a) 

𝛿𝑥 

𝑥 = 0 𝑥 = 𝐿0 

𝑦 = 0 

(b) 

𝛿𝑠 

𝑥 = 0 𝑥 = 𝐿0 

𝑦 = 0 
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CONFUSING UNDERGRADUATE DERIVATIONS 

Next, we will follow closely the approach taken in the calculus-based physics textbook (Shankar, 

2014). This approach is representative of what is presented in many introductory textbooks when 

deriving the wave equation on a linear elastic string7 and the potential energy density of the 

transverse wave8. We use the approximation small amplitude string vibration to justify the 

following conditions:  

(a) The string deflections about the equilibrium position are assumed to produce negligible 

effects on the tension, such that the tension remains approximately constant and equal to the 

equilibrium value 𝑇(𝑥) = 𝑇0.  

 (b) The small deflections of the string are characterized by small slopes along the string y′(x) =

tan(𝜃) ≈ 𝜃, and therefore in the following derivations we will retain terms up to linear order on 

the slopes such that9, sin(𝜃) ≈ 𝜃 ≈ tan(𝜃) = 𝑦′(𝑥) and cos(𝜃) ≈ 1. 

From (a) and (b) the equations of motion Eq [5] and Eq [6] reduce to: 

 
7 See for instance  (Walker, Halliday, & Resnick, 2018; Giancoli, 2020; Katz; Knight, 2016; Serway & Jewett, 2019; 
Tipler & Mosca, 2007; Alonso & Finn, 1983; Wolfson & Richard, 2011; French, 2003; Ling, Sanny, & Moebs, 2016) 
8 See for instance (French, 2003; Fowler; Salsa, 2008; Caamano Withall & Krysl, 2016) 
9 We use the (‘) accent notation to represent partial derivative with respect to position (x). 

Figure 2. A small mass element 𝛿𝑚 is shown in the static equilibrium (red) configuration and deformed 

(blue) configuration.  As a wave travels through the string, the element 𝛿𝑚 is deformed and it’s the 

length changes from 𝛿𝑥 to 𝛿s. 

 
𝑻(𝒙) 

𝑻(𝒙) 
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𝑑(𝑇0)

𝑑𝑥
= 𝜇𝑜𝑎𝑥 = 0.                                                                                                                                 Eq [9] 

𝑇0

𝑑(𝑦′(𝑥))

𝑑𝑥
= 𝑇0𝑦

′′(𝑥, 𝑡) = 𝜇𝑜𝑎𝑦 .                                                                                                  Eq [10] 

As evident from equation, the horizontal component of the force is constant and equal to 𝑇𝑜, and 

therefore there is no motion in the horizontal direction (𝑎𝑥, = 0). It is important to emphasize 

that in the typical undergraduate derivation, it is this level of approximation (cos 𝜃 ≈ 1), that 

justifies pure transverse displacements. 

We rewrite the acceleration in the vertical direction 𝑎𝑦 = 𝑦̈(𝑥, 𝑡) as the second derivative of 

the position coordinate 𝑦(𝑥, 𝑡) with respect to the time variable10, such that equation 

reduced to the famous linear wave equation in a flexible string: 

𝑦′′(𝑥, 𝑡) =
𝜇0

𝑇0
𝑦̈(𝑥, 𝑡).                                                                                                                          Eq [11] 

This concludes the 1st part of the derivation.  

Next, we present the derivation of the potential energy density stored in a string when waves are 

present. We follow the steps of the derivation as it typically done by the undergraduate physics 

education community. 

As a wave travels through the string, the elements of the string are assumed to have a small but 

quantifiable stretch. Therefore, the potential energy stored in the string is elastic in nature and 

it equal to the work done by the tension during the stretch. We consider a small element of mass 

𝛿𝑚 as shown in Figure (1), where the points along the string are assumed to move only along the 

transverse direction.  The extension of the string is given by Eq. (7), and for small vertical 

deflections 
𝛿𝑦

𝛿𝑥
≪ 1, then the length distorted length of the element would be: 

𝛿𝑠 ≈  𝛿𝑥 (1 +
1

2
(
𝛿𝑦

𝛿𝑥
)
2

) .                                                                                                                   Eq [12] 

Since the tension 𝑇0 is assumed to remain constant, then the work done by the tension during 

the stretch of the element of mass 𝛿𝑚 from 𝛿𝑥 to 𝛿𝑠 is: 

𝛿𝑊 = 𝑇𝑜(𝛿𝑠 − 𝛿𝑥) = 𝑇𝑜𝛿𝑥 (
1

2
(
𝛿𝑦

𝛿𝑥
)
2

) .                                                                                        Eq [13] 

Defining the potential energy density (𝑢𝑝) as the work per unit length, and taking the limit as 

𝛿𝑥 → 0 we obtain the classical result: 

 
10We use the dot accent notation to represent partial derivative with respect to time. 
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𝑢𝑝 =
1

2
𝑇0(𝑦

′(𝑥)2).                                                                                                                               Eq [14] 

This concludes the derivation of both the wave equation and the potential energy density.  

Next, we go over the points in the derivation that can leave students confused and unsatisfied. 

First, students with background in properties of materials will find it contradictory to have a 

constant tension while simultaneously allowing the string to stretch. Even for small deformations 

the linearized theory of elasticity tells us that the stress (tension) depends on the strain (stretch). 

In addition, students might look back at the derivation and find a mathematically inconsistent 

use of the small angle approximation. In section 2.1 we found that for pure transverse motion 

the string elements must satisfy 𝑑𝑥 = cos θ(x) 𝑑𝑠. But when deriving the wave equation Eq [1], 

we have used the cos θ(x) ≈ 1 such that the longitudinal displacements of the string are 

neglected. If we were to consistently use the same level of approximation (when deriving the 

potential energy) it would imply that the string has negligible stretch, and the potential energy 

density should in fact be zero. It is clear then, that to have a quantifiable stretch one needs to 

use a higher order expansion of 𝑐𝑜𝑠 𝜃 ≈ 1 −
𝜃2

2
, such that  

𝑑𝑠 =
𝑑𝑥

cos(𝜃)
≈ (1 +

𝜃2

2
)𝑑𝑥 = (1 +

1

2
𝑦′(𝑥))𝑑𝑥.                                                                     Eq [15] 

Some questions that might pop in a student’s mind are: what kind of material satisfy the 

assumption of constant tension? why do we to use two different approximations for the cos θ(x) 

when we are talking about the same physical system? Is the assumption of constant tension 𝑇𝑜 

even compatible with the assumption that the string undergoes pure transverse displacements 

(cos θ(x) ≈ 1)? 

 

NEW APPROACH: PURE TRANSVERSE MOTION AND PERFECTLY ELASTIC MATERIALS 

The Linear Wave Equation 

In this section, we consider an elastic string that in addition to the general description given in 

section (2), it also obeys the constitutive law of a linear elastic material (Hooke’s law). 

We divide the string into N elements of equal mass 𝛿𝑚, where each element ‘i’ behaves as linear 

elastic spring.  In the absence of any applied tension the natural unstretched total length of the 

string is 𝐿̂, and 𝛿𝑥̂ is the natural unstretched length of the small mass element 𝛿𝑚.  
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Then as the element is stretched by a distance ∆, the tension 𝑇 on the element is given by Hooke’s 

constitutive law 𝑇 = 𝑘(∆), where k is the constant of elasticity11 that depends on the material 

properties and is specified empirically.  

Fig 1a shows the static equilibrium configuration of the string where the length total length is 𝐿𝑜 

and each mass element has been uniformly stretched by a distance ∆= 𝛿𝑥 − 𝛿𝑥̂. Therefore, the 

equilibrium uniform tension 𝑇𝑜 is given by: 

𝑇𝑜 = 𝑘(𝐿𝑜 − 𝐿̂) = 𝑘(𝛿𝑥 − 𝛿𝑥̂).                                                                                                        Eq [16] 

Fig 1b shows the deformed stretched configuration of the string where the total length is 𝐿 > 𝐿𝑜, 

and the mass element have been stretched by a distance ∆= 𝛿𝑠 − 𝛿𝑥̂. Therefore, the tension in 

the deformed configuration is: 

𝑇(𝑥) = 𝑘(𝛿𝑠 − 𝛿𝑥̂).                                                                                                                             Eq [17] 

Solving for the 𝑘 in terms of the equilibrium tension 𝑇𝑜 we find: 

𝑇(𝑥) = 𝑇𝑜

(𝛿𝑠 − 𝛿𝑥̂)

(𝛿𝑥 − 𝛿𝑥̂)
.                                                                                                                         Eq [18] 

After some algebra (see Appendix A2), and taking the limit as 𝛿𝑥 → 0, the tension for an 

infinitesimal element of the string in the deformed configuration can be written as: 

𝑇(𝑥) = 𝑇𝑜 [
𝑑𝑠

𝑑𝑥
+ (

𝐿̂

𝐿𝑜 − 𝐿̂
) (

𝑑𝑠

𝑑𝑥
− 1)] .                                                                                          Eq [19] 

Next, we check if the above expression simultaneously satisfies the two conditions for pure 

transverse motions given in section 2.1. We impose the geometric condition for a transverse 

wave  𝑑𝑠 = cos 𝜃(𝑥)𝑑𝑥, such that the horizontal and vertical components of the tension are: 

𝑇𝑥 = 𝑇(𝑥) cos 𝜃 = 𝑇𝑜 [1 + (
𝐿̂

𝐿𝑜 − 𝐿̂
) (1 − cos 𝜃)] ,                                                                    Eq [20] 

𝑇𝑦 = 𝑇(𝑥) sin𝜃 = 𝑇𝑜 [tan 𝜃 + (
𝐿̂

𝐿𝑜 − 𝐿̂
) (tan 𝜃 − sin𝜃)] ,                                                       Eq [21] 

 

were 𝜃 = 𝜃(𝑥) is a function of the x-coordinate. We see that 𝑇𝑥 is spatially dependent and it will 

yield longitudinal accelerations. Assuming small amplitude vibrations does not warrant an 

approximately constant horizontal tension. Even for cos 𝜃 ≈ 1, if the string static equilibrium 

stretch 𝐿𝑜  and the natural unstretched length 𝐿̂ of the string are approximately equal (𝐿𝑜 ~ 𝐿̂),  

 
11 For a string with cross sectional area 𝐴̂, the constant 𝑘 =

𝐸𝐴

𝛿𝑥
, where E is Young’s modulus (E). 
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the second term in the expression 𝑇𝑥 can be order of unity and the spatially variations of 𝑇𝑥 can 

be significant.  

So, under which conditions is the constant horizontal tension 𝑇𝑥 ≈ 𝑇𝑜 approximation justified? If 

the equilibrium stretched length of the string is much larger than the natural length (𝐿𝑜 ≫ 𝐿̂), 

then second term in the expression for 𝑇𝑥 vanishes in comparison to unity 12: 

1

𝜀𝑜
= (

𝐿̂

𝐿𝑜 − 𝐿̂
) ≈ 0,                                                                                                                             Eq [22] 

where 𝜀𝑜 is known as the engineering strain in the equilibrium configuration and it measures the 

extension in going from the natural unstretched configuration 𝐿̂, to the equilibrium stretched 

configuration of the string 𝐿𝑜 .  For 𝐿𝑜 ≫ 𝐿̂, the tension 𝑇(𝑥)  in the deformed configuration is 

given: 

𝑇(𝑥) ≈ 𝑇𝑜

𝑑𝑠

𝑑𝑥
.                                                                                                                                       Eq [23] 

Strings that obey the above constitutive law for the stretching behavior are known as perfectly 

elastic. These materials can be modelled as having a negligible length in the absence of tension 

(𝐿̂ ≈ 0)13 . Examples of such behavior can be seen in soft pre-tensioned springs such as the 

@slinky.  Finally, for a perfectly elastic string the vertical component of the tension reduces to: 

𝑇𝑦 = 𝑇(𝑥) sin 𝜃(𝑥) = 𝑇0 tan 𝜃(𝑥) =𝑇0 𝑦
′(𝑥).                                                                              Eq [24] 

Using 𝑎𝑦 = 𝑦̈(𝑥, 𝑡), and plugging 𝑇𝑦 into the equation of motion Eq [6], we recover the one-

dimensional linear wave equation: 

𝑦′′(𝑥, 𝑡) =
𝜇0

𝑇0
𝑦̈(𝑥, 𝑡),                                                                                                                          Eq [25] 

Therefore, for special case of elastic strings where the initial stretch is large compared with the 

natural length (𝜀𝑜 ≫ 1), the linear wave equation describes the vibrating motion of a transverse 

wave exactly. This is the case even for moderate amplitude vibrations when cos 𝜃 ≪ 1. 

Potential Energy Density Using The Expressions For Springs (Non-Calculus) 

Just like before, we continue to model the string as a linear elastic material that has been divided 

into N small mass elements 𝛿𝑚. Each element ‘i’ behaves like Hookean spring.  A change in length 

∆ in the mass element will result in a change in elastic potential energy of 𝑘(∆)2 2⁄ , were 𝑘 is the 

elastic constant for the material. In the absence of any loads an element is initially at its natural 

 
12 Note that since the string is under a uniform stretch in the equilibrium configuration the requirement 𝐿𝑜 ≫ 𝐿̂ is 
the same as  𝑑𝑥 ≫ 𝑑𝑥̂. 
13 Note that as 𝛿𝑥̂ approach zero, 𝑘 will remain finite if 𝐸𝐴̂ approach zero as well. This means that the zero length 

materials are good approximations for soft elastic strings with negligible cross-sectional area 𝐴̂ and low Youngs 
modulus 𝐸. 
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length 𝛿𝑥̂. Then a constant tension 𝑇0 is applied to bring the string to the equilibrium stretched 

state as shown in Fig 2. Under tension 𝑇0, the element stretches from 𝛿𝑥̂ to a length 𝛿𝑥, and its 

potential energy in the equilibrium stretched configuration is: 

𝛿𝑈𝑜𝑖 = 
1

2
𝑘(𝛿𝑥 − 𝛿𝑥̂)2.                                                                                                                      Eq [26] 

During the wave motion, the tension is increased further, stretching the string element to a 

length 𝛿𝑠 and its potential energy in the deformed state is: 

𝛿𝑈𝑠𝑖 = 
1

2
𝑘(𝛿𝑠 − 𝛿𝑥̂)2.                                                                                                                       Eq [27] 

The potential energy ‘stored’ in the elements of the string due to the wave traveling (𝛿𝑈𝑖) is given 

by the difference in the energy before and after deformation: 

𝛿𝑈𝑖 = 𝛿𝑈𝑠𝑖 − 𝛿𝑈𝑜𝑖 =  
1

2
𝑘(𝛿𝑠 − 𝛿𝑥̂)2 −

1

2
𝑘(𝛿𝑥 − 𝛿𝑥̂)2.                                                            Eq [28] 

Using the definition for the deformed tension 𝑇(𝑥) and the equilibrium tension  𝑇𝑜 we can rewrite 

the expression above as: 

𝛿𝑈𝑖 =
1

2
𝑇(𝑥)(𝛿𝑠 − 𝛿𝑥̂) −

1

2
𝑇𝑜(𝛿𝑥 − 𝛿𝑥̂).                                                                                     Eq [29] 

For the special case of perfectly elastic string the natural length 𝛿𝑥̂ is negligible in comparison to 

the stretched length  𝛿𝑥 and  𝛿s and the stretched tension is given by 𝑇(𝑥) = 𝑇𝑜
𝛿𝑠

𝛿𝑥
. Therefore, 

the expression for 𝛿𝑈𝑖 reduces to: 

𝛿𝑈𝑖 =
1

2
𝑇𝑜

𝛿𝑠

𝛿𝑥
(𝛿𝑠) −

1

2
𝑇𝑜(𝛿𝑥) =

1

2
𝑇𝑜 [(

𝛿𝑠

𝛿𝑥
)
2

− 1]𝛿𝑥,                                                              Eq [30] 

since 𝛿𝑠2 = 𝛿𝑦2 + 𝛿𝑥2, then 

𝛿𝑈𝑖 =
1

2
𝑇𝑜 (

𝛿𝑦

𝛿𝑥
)
2

𝛿𝑥.                                                                                                                           Eq [31] 

In the limit as 𝛿𝑥 becomes an infinitesimal element along the string we get the potential energy 

per unit length (density) to be: 

𝑑𝑈

𝑑𝑥
=

1

2
𝑇𝑜(𝑦

′(𝑥))
2
.                                                                                                                              Eq [32] 

Potential Energy Density Using The Concept Of Work (Calculus) 

Some students might not wonder why not derive the potential energy density using tension. 

Ultimately it is the work done by tension against the stretching which gives rise to the elastic 
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energy. Below we show an alternative derivation that might satisfy the curiosity of those 

students.  

As done earlier our starting point is a string divided into N small mass elements 𝛿𝑚. Each element 

‘i’ undergoes pure transverse displacements and the deformation can be characterized by the 

deformation angle 𝜃𝑖 (See Fig 3). 

 

 

 

 

 

 

 

 

 Due to the pure transverse motion argument, the infinitesimal displacement vector has only a 

component along the vertical direction 𝑑𝑟⃗⃗⃗⃗ = 𝑑𝑦 𝑗,̂ and therefore the potential energy of element 

‘i’ that is displaced from equilibrium by a pure transverse displacement 𝛿𝑦 is given by: 

𝛿𝑈𝑖 = ∫𝑑𝑇⃗⃗⃗⃗  ⃗ ∙ 𝑑𝑟⃗⃗⃗⃗ = ∫ 𝑇𝑦  𝑑𝑦
𝛿𝑦

0

= ∫ 𝑇𝑜 tan(𝜃𝑖) 𝑑𝑦.
𝛿𝑦

0

                                                                   Eq [33] 

To evaluate the above integral, we notice that as an element ‘i’ deforms, its horizontal projection 

length 𝛿𝑥 remains constant while the deformation angle 𝜃𝑖 increase is related to the vertical 

coordinate  𝑦 by the following relation: 

tan(𝜃𝑖(𝑦)) =
𝑦

𝛿𝑥
.                                                                                                                                 Eq [34] 

Therefore, the potential energy of the ‘ith’ element reduces to: 

𝛿𝑈𝑖 =
𝑇𝑜

𝛿𝑥
∫ 𝑦 𝑑𝑦

𝛿𝑦

0

=
1

2
𝑇𝑜 (

𝛿𝑦

𝛿𝑥
)
2

𝛿𝑥.                                                                                               Eq [35] 

Which is the same expression we obtained in section 4.1. 

 

𝛿𝑥 

𝛿𝑦 

𝛿𝑠 

𝜃𝑖 

𝑇𝑦 

𝑇𝑥  

Figure 3. The ith element of a string that undergoes pure transverse displacement. The string has been divided 
into equal N equal elements of mass 𝛿𝑚. 
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FROM THEORY TO EXPERIMENT: LINEAR ELASTIC MATERIALS 

In this section, we propose an experiment using linear elastic strings. Linear elastic theory 
(Hooke’s law) describes the behavior of materials that return to their original shape after the 
external deforming force is removed. We have used a set of tensional springs with small-cross 
sectional area as the 1D ‘string’. These springs are commonly used by students in labs when 
exploring Hooke’s Law14.  Our proposed laboratory activity will further emphasize the stretchy 
nature of the string, and it will help students connect wave theory with elasticity. During wave 
motion elements of the string stretched by an amount ∆, the tension along that portion of the 
string is given by Hooke’s law 𝑇 = 𝑘∆, where 𝑘 is the ‘stiffness’ constant. The goal of the 
experiment is to characterize the constant 𝑘. Before starting the activity, students should also be 
familiar with standing waves on a string. For this experiment students will need: 
 

5.1 Equipment: 

• Elastic String (we used a tensional string: https://www.pasco.com/products/lab-

apparatus/mechanics/springs-and-oscillations/se-8749)  

• Wave Driver (we used the mechanical oscillator: https://www.pasco.com/products/lab-

apparatus/waves-and-sound/ripple-tank-and-standing-waves/sf-9324)  

• Wave generator (we used https://www.pasco.com/products/lab-apparatus/waves-and-

sound/ripple-tank-and-standing-waves/wa-9867)  

• A fixed support. 

The string (tensional spring) is attached at one end to a mechanical oscillator and the other end 

attached to a fixed support. The ends of the string are at the same height such that the string is 

hanging in a horizontal position. 𝐿0 is the distance between the supports. As 𝐿0 is increased the 

tension on the string will increase. A picture of the experimental set up is shown in Fig 4.  

 
14 We note that the proposed wave experiments can be replicated using strings made out of rubber bands, elastic 
cords, and other fabrics. To a good level of approximation, most materials in our macroscopic world can be 
modelled as linear elastic when the deformations are small. 
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Figure 4: Suggested experimental set up. Image taken from https://www.pasco.com/products/lab-
apparatus/waves-and-sound/ripple-tank-and-standing-waves/wa-9867 

Procedure 

The procedure for the experiment is simple. Students are instructed to find the 1st harmonic wave 

on the string and document the fundamental frequency 𝑓1 as the distance between the fixed 

supports 𝐿0 is modified. Then 𝑘 can be found by quantifying the relationship between 𝑓1 and 𝐿0. 

The fundamental frequency (1st harmonic) of the standing wave for a linear elastic string is: 

𝑓1 =
1

2𝐿0
√

𝑇0

𝜇0
.                                                                                                                                       Eq [36] 

For a uniform density string 𝜇0 = 𝑚/𝐿0 and for a linear elastic string the tension is 𝑇0 =

𝑘(𝐿0 − 𝐿̂), the expression above can be rewritten in the form (𝑓1)
2 = 𝑘𝑞, were 𝑞 =

1

4𝑚
(1 −

𝐿̂

𝐿0
) 

is the independent variable that depends directly on the initial stretch of the string. Then a plot 

of (𝑓1)
2 𝑣𝑠. 𝑞 will yield the elastic constant as the slope of the graph. A sample scenario of an 

experiment is shown in Table 1. The comparison of the experimental data from Table 1 and the 

theoretical prediction is plotted in Figure 5. 

Table 1: Fundamental frequencies 𝑓1 corresponding to the standing waves of an elastic string as a 

function of the initial stretch 𝐿𝑜. The string has mass m = 2.5 [g], and undeformed length 𝐿̂ = 5.5 [cm] 
and a stiffness constant k = 5 [N/m] 

Frequency 
 𝑓1 [Hz] 

 
16.0 

 
18.0 

 
19.5 

 
20.1 

 
20.5 

Initial Stretch 
𝐿𝑜 

 

         2𝐿̂ 

 

3𝐿̂ 

 

4𝐿̂ 

 

5𝐿̂ 

 

6𝐿̂ 

Wave generator 

Wave driver 

Fixed support 

Elastic string 
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Figure 5: Plot of (𝑓1)
2 𝑣𝑠. 𝑞, were 𝑞 =

1

4𝑚
(1 −

𝐿̂

𝐿0
). The experimental data (red x) is from Table 1. The 

slope of the theoretical fit (blue line) is k = 5 [N/m]. 

Once the value of 𝑘 is found, it is instructive to plot 𝑓1 as a function of 𝐿0 (see Fig 6): 

𝑓1 = √
𝑘

4𝑚
(1 −

𝐿̂

𝐿0
) .                                                                                                                           Eq [37] 

As shown in Fig 6, students will notice that as 𝐿0 increases the fundamental frequency increases 

but eventually it flattens out and approaches the constant value: 

𝑓1
∗ = √

𝑘

4𝑚
.                                                                                                                                           Eq [38] 

This means that for strings that behave like perfectly elastic materials (𝐿0 ≫ 𝐿̂), the fundamental 

frequency is a constant that depends on the material properties of the string 𝑘 and 𝑚, and 

therefore independent of the initial stretch 𝐿0 and/or tension 𝑇0.   
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Figure 6: Plot of 𝑓1 as a function of 𝐿0. The experimental data (red x) is from Table 1. The theoretical fit 
(blue line) approaches 𝑓1

∗given by Eq [38] 
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APPENDIX - Some points where a student might need some clarification 

A1: Mass per unit length in the equilibrium vs. deformed configurations. 

Students might wonder why we use 𝛿𝑚 =  𝜇𝑜𝛿𝑥, shouldn’t we use the length 𝛿𝑠 of the deformed 

section and therefore shouldn’t we have a mass per unit length 𝜇(𝑥, 𝑡) that depends on how 

much we stretch the string which depends on space and time? 

First, we recognize that the total mass 𝛿𝑚 will be given by: 

𝛿𝑚 =  ∫ 𝜇(𝑥, 𝑡)𝑑𝑥.
𝑥+𝛿𝑥

𝑥

                                                                                                                     Eq [A1] 

In the equilibrium configuration (Figure 1a), the mass per unit length is uniform 𝜇(𝑥, 𝑡) = 𝜇𝑜 and 

hence the integral reduces to the familiar: 

𝛿𝑚 = ∫ 𝜇𝑜𝑑𝑥
𝑥+𝛿𝑥

𝑥

= 𝜇𝑜𝛿𝑥.                                                                                                               Eq [A2] 

Recall that the mass 𝛿𝑚 is a conserved quantity, it does not change even when the string 

stretches. Therefore 𝜇𝑜𝛿𝑥 is a constant that we can use to represent the mass of an element at 

any point in time. It might be worth to point out that 𝜇(𝑥, 𝑡) is not conserved and changes as the 

waves travel through the string. One can find the relationship between 𝜇(𝑥, 𝑡) and 𝜇𝑜 by noticing 

that in the deformed configuration we will have:  

𝛿𝑚 =  ∫ 𝜇(𝑥, 𝑡)𝑑𝑠,
𝑠+𝛿𝑠

𝑠

                                                                                                                       Eq [A3] 

where 𝑑𝑠 = 𝑑𝑥√1 + 𝑦′(𝑥)2 is the infinitesimal stretch.  Using a change of variable for the 

integration the mass in the deformed state is: 

𝛿𝑚 =  ∫ 𝜇(𝑥, 𝑡)√1 + 𝑦′(𝑥)2 𝑑𝑥
𝑥+𝛿𝑥

𝑥

.                                                                                             Eq [A4] 

Since 𝛿𝑚 is conserved quantity, then: 

𝜇(𝑥, 𝑡) =
𝜇𝑜

√1 + 𝑦′(𝑥)2
.                                                                                                                      Eq [A5] 

 

A2: Expression for the tension T(x) of the string in the deformed configuration (waves present). 

We define the stretch variable 𝜆𝑜 which measures the change in length of the string going from 

the natural unstretched string state (𝐿̂) to the equilibrium stretched state (𝐿𝑜): 

𝜆𝑜 =
𝛿𝑥

𝛿𝑥̂
=

𝐿𝑜

𝐿̂
.                                                                                                                                      Eq [B1] 
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Similarly, the stretch variable 𝜆𝑠 measures the extension going from the natural unstretched 

string state (𝐿̂) to the deformed stretched state (𝐿) where a wave is present: 

𝜆𝑠 =
𝛿𝑠

𝛿𝑥̂
=

𝛿𝑠

𝛿𝑥
𝜆𝑜                                                                                                                                   Eq [B2] 

Then we use the definition of the tension 𝑇(𝑥) from the main text as a function of the equilibrium 

tension 𝑇𝑜: 

𝑇(𝑥)

𝑇𝑜
=

𝛿𝑠 − 𝛿𝑥̂

𝛿𝑥 − 𝛿𝑥̂
=

𝜆𝑠 − 1

𝜆𝑜 − 1
=

𝛿𝑠
𝛿𝑥

𝜆𝑜 − 1

𝜆𝑜 − 1
=

𝛿𝑠

𝛿𝑥
 (

𝜆𝑜

𝜆𝑜 − 1
) −

1

𝜆𝑜 − 1
.                                        Eq [B3] 

Where we have used the definitions of the stretch in the equilibrium and deformed configuration.  

For the sake of completion, we show below the algebraic steps that lead to the final expression: 

𝑇(𝑥)

𝑇𝑜
=

𝛿𝑠

𝛿𝑥
 (1 +

1

𝜆𝑜 − 1
) −

1

𝜆𝑜 − 1
=

𝛿𝑠

𝛿𝑥
+ (

1

𝜆𝑜 − 1
)(

𝛿𝑠

𝛿𝑥
− 1) ,                                            Eq [B4] 

𝑇(𝑥)

𝑇𝑜
=

𝛿𝑠

𝛿𝑥
+ (

𝐿̂

𝐿𝑜 − 𝐿̂
) (

𝛿𝑠

𝛿𝑥
− 1) .                                                                                                   Eq [B5] 

Finally, we can arrive to a more compact expression by using the definition of the engineering 

stress in the equilibrium configuration 𝜀𝑜 = (𝐿𝑜/𝐿̂ − 1) such that the tension is: 

𝑇(𝑥) = 𝑇𝑜 [
𝛿𝑠

𝛿𝑥
(1 +

1

𝜀𝑜
) −

1

𝜀𝑜
] .                                                                                                        Eq [B6] 
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