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ABSTRACT 

Teaching upper division statistical physics can often be clouded by the theory and complex examples used.  To 

better help students appreciate the fundamental statistical concepts and how they are connected to 

thermodynamic principles this paper suggests using a simple abstract model. Using Atkins’ Model students can 

see these ideas clearly connected and have a straightforward reference to help understand the behavior of more 

complicated cases.  
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INTRODUCTION 

In my upper division Statistical Physics course, I find that the students often focus too much 

of the mathematics and neglect to see the fundamental statistical relationships.  Considering 

the complexity of the some of the systems we look at, this is not surprising.  However, I 

consider it very important that the students appreciate how the fundamental idea of accessible 

states leads to the well-known thermodynamic relationships, like the 2nd Law. 

 Furthermore, the statistical methods used in physics could be applied to any system, 

while I think many students believe that they are somehow just of use in the study of gases 

and other special physical systems.  This demonstrates my primary concern that they do not 

appreciate the fundamental statistics and why it is related to thermodynamic laws. 

 To address this I have begun looking at a simple system that has been well developed 

by Atkins (1984).   Using this straightforward statistical model, I think that students gain a 

better understanding of how and why the thermodynamic laws have their particular form.  

They also gain a simple conceptual model to help understand more complex systems. 

 This paper first details the Atkins’ model and then looks at several derivations that are 

commonly carried out in an upper division statistical physics course.  

 

ATKIN’S MODEL 

P.W. Atkins introduces the model used in this paper in his book “The Second Law” (Atkins, 

1984) which was part of the Scientific American Library Series. Impressively, Atkins doesn’t 

just look at the 2nd Law of Thermodynamics, as discussed in this paper, but includes a broad 

range of phenomena. Included are discussions of Boltzmann’s Demon, simple engines, and 

chemical transformations (including burning). All explained through this simple model.  

Atkins’ Model is discussed in detail by the previous research (Atkins, 1984; Kincanon, 2013; 

Mattis, 2003, Nuffield, 1972; Styer, 2000). Here is presented a summary of that work that 

follows that primarily using the discussions of Kincanon..  This model uses a grid of cells as 

shown in Figure 1.  This is a 20 x 20 grid of cells, but any number of cells is fine. Each cell 

has the characteristic of either being ON or OFF.   In the grid, several cells are shown as ON 

by being filled in:   
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Figure 1. Atkins model for heat flow with 10 cells ON 
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A cell being ON is a model of it having energy that is not possessed by the OFF cells.  

The transfer of energy or heat flow is modeled by the ONs not being static in their positions.  

During each time step they migrate to one of the eight surrounding cells with the caveat that 

no cells can leave the grid and no cell can possess two ONs.  So, the number of ONs is 

conserved, representing conservation of energy.  (Though it is not necessary to require only 

one ON per cell, I think that it makes for a simpler visual representation that is still consistent 

with qualitative predictions.)  Temperature is modeled in this grid by dividing the number of 

ONs by the total number of cells in the grid; or in other words, by the density of the ONs. 

 To clarify how this model’s heat flow, consider what one would expect to happen if 

the ONs started all near one corner as in Figure 2. 
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Figure 2.  Atkins model for heat flow with 10 cells ON, but concentrated in one region 
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 As the ONs migrate randomly one would expect, given enough time, that each ON 

would have equal probability of occupying any cell and also, as students easily predict, one 

does not expect to see all of the ONs back up in the corner.  This is a model of heat flow.   

 If we took the ONs all in the corner as my hot cup of coffee at the beginning of my 

lecture and the rest of the cells, the ones outside of the 5 x 5 corner, as the lecture room, we 

could understand why the temperature of the coffee eventually matches the temperature of the 

room.  As we allow the ONs in Figure 2 to migrate around we expect, after a lot of time steps, 

to see a situation with the ONs spread throughout the grid.  Though we would not predict a 

particular configuration of the ONs, we do expect to see a uniform density.  The students can 

see why the initial high ON density coffee and low-density room lead to an equal ON density 

of the coffee cup and room.  (Students usually agree with this quickly.)  And since temperature 

is defined as the density of ONs, they can see how this models the progression to thermal 

equilibrium.  There is however a problem. 

 If the ONs are moving around randomly then it is possible that an initial configuration 

of the room and coffee at the same temperature could be followed by the coffee heating up 

and the room cooling.  Since the ONs are moving around randomly there is a chance that they 

will occupy the corner 5 x 5 section and so it does seem possible that the coffee will heat up. 

This also makes "sense" to the students but hopefully they also realize that they have never 

observed that occurring. Why not? 

 The key concept here is the distinction between a particular arrangement of ONs and 

what we measure, the temperature.  Since temperature is a measure of the density of ONs, 

there are many possible arrangements of ONs for a given temperature.   Now I introduce the 

concepts of microstates and macrostates.  A microstate is a particular arrangement of ONs 

while a macrostate is a particular temperature.  So, a given macrostate corresponds to many 

different microstates.  And, critical to the student understanding, is that different macrostates 

are associated with different probabilities of occurrence. 

 This can be seen by considering the microstates first.  Since the ONs move randomly 

each microstate has the same probability.  Since each macrostate corresponds to a different 

number of microstates, each macrostate has a different probability.  So, the macrostate that 

corresponds to the largest number of microstates is the most probable. This explains why the 

room temperature coffee is not observed to heat up.  The number of microstates associated 

with the coffee being hot is very small compared the number of microstates with the room and 

coffee being near the same temperature.  It is important it note that though the probability of 

my coffee heating up as the lecture goes on is small it is not zero.   
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ADVANCED CALCULATION EXAMPLES 

There are, of course, a lot of calculations and derivations that are done in a typical statistical 

physics course.  Here, two examples are given that illustrate how the Atkins’ Model can be 

used.  These are finding the total energy as a function of temperature and looking at the 

conditions under which equilibrium occurs. 

 For both of these examples one needs to use the relationship between the temperature 

parameter, b, and the number of accessible states, Ω. Assuming that there are m ON’s in a 

grid of N cells, the number of accessible states is given by: 

 

     Ω =
N!

(N−m)!
                 (1) 

  

b and Ω are related by: (Reif, 1965) 

    b = ∂lnΩ/ ∂E        (2) 

  

It is reasonable to assume that the energy, E, is proportional to the number of ON’s, 

m. For simplicity a proportionality constant of 1 is used.  So, since E = m, the above equation 

becomes: 

    b = ∂lnΩ/ ∂m       (3) 

 

Combining this with the original expression for Ω gives: 

 

    β =  
∂

∂m
 [ln N! − ln(N − m)!]     (4) 

 

Eliminating the parenthesis and using the approximation for large n that: 

 

    
d ln n!

dn
= ln n       (5) 

 

Gives: 

    β = ln(N − m)      (6) 
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Since b = 1/kT, where k is Boltzmann’s Constant and T is the temperature, one has: 

  

   1/kT = ln(N − m)       (7) 

 

 Equation (7) can be used to easily find the relationship between the energy, E, and 

the temperature.  Since E = m, equation (7) yields: 

  

E = N −  e1/kT      (8) 

 

How this matches intuition, can be seen by looking at a limiting case.  As T approaches 

∞, it is seen that E approaches N-1.  One would expect that in this limit one would see that E 

approaches N. But, and this comes up often in statistical physics, the derivations are assuming 

that N is very large. (It is the underlying assumption that gives equation 1.)  So, N-1 is N for 

very large N and the expected result matches. 

 As another example consider the thermal interaction between two systems A and A’.  

Equilibrium is obtained when the Entropy is a maximum.  The Entropy, S, is given by 

    S = k ln Ω  

 

One has for the combined systems that the total Entropy is given by: 

    S = k ln Ω + k ln Ω` 

 

Saying that S is a maximum at equilibrium is requiring that: 

    0 = 
𝜕

𝜕𝑚
k ln Ω +

𝜕

𝜕𝑚`
 k ln Ω` 

 

Now, using the original equation for Ω and the fact that 
𝜕

𝜕𝑚
= -

𝜕

𝜕𝑚`
 , one gets that: 

    𝛽 = 𝛽` 

 

which is of course equivalent to T = T`.  So, it has been demonstrated that maximum 

Entropy corresponds to thermal equilibrium (Details of this calculation can be found in Reif 

(1965))  
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 So, these two examples show that the methods of statistical physic give expected 

thermodynamic results even for an abstract system. Using the fundamental equation for Ω all 

of the relationships of thermodynamics for the Atkins’ Model could also be found. 

 

SUMMARY 

Using Atkins’ Model and applying the techniques of statistical physics gives the expected 

results for thermodynamic behavior. Though this should not be surprising, by using such a 

simple model, students can better appreciate how the statistical physics functions and what 

the thermodynamic relationships mean fundamentally. 

 Given here were just two examples of using Atkins’ Model. In fact, any relationship 

in statistical physics that includes reference to the number of accessible states can be applied 

to this model. The examples presented here were chosen to emphasize fundamental 

relationships between Ω and particular thermodynamic quantities. Since Statistical Physics 

reduces all of Thermodynamics to characteristics of Ω there are no limits to this application. 

One can look at engine efficiencies, Maxwell’s Demon or any other topic covered in Statistical 

Physics. The challenge is to choose cases in which this model gives students a better insight 

into the statistical relationships and is not just a mathematical exercise. 
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