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Abstract 

Eigenstates of a quantum mechanical system reflect one to one correspondence with energy level. However, 

in some systems more than one or a group of eigenstates correspond to a single eigenvalue. To introduce more 

than one eigenstate corresponding to single energy eigenvalue in 1D-harmonic oscillator, we introduce a new 

perturbation term and find entire eigenspectrum become degenerate in nature without changing the 

eigenfunctions of the system.  
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INTRODUCTION 

In classical physics, a system corresponds to a single energy. However, in quantum 

mechanics single energy is replaced by energy level corresponding to single eigenstate. 

Mathematically, there is one to one correspondence between energy level and eigenstate 

(Bender and Boettcher, 1998; Biswas, 2013; Jorda, 2018; Griffiths, 2005; Gupta et al., 1974; 

Rath, Mallick, and Mohapatra, 2020) i.e.  

Ψ𝑖  >⟶ 𝐸𝑖                              (1) 

 

In fact, the no of eigenstates of quantum mechanical systems are very large. A simple 

example of this is one-dimensional harmonic oscillator having Hamiltonian of the form, 

𝐻 = 𝑃2 + 𝑥2           (2) 
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having eigenfunction 

Ψ𝑛 =  √
√𝜋

𝑛!2𝑛
𝐻𝑛 (𝑥)𝑒

−
𝑥2

2       (3) 

 

In the above,  𝐻𝑛 (𝑥) is the Hermite polynomial , which can be generated as 

𝐻𝑛(𝑥) = (−1)
𝑛𝑒𝑥

2 𝑑𝑛

𝑑𝑥𝑛
𝑒−𝑥

2
     (4)  

 

Here, the eigenvalues of the system are, 

𝐸𝑛 = (2𝑛 + 1)       (5) 

 

In above, we see there is a one-to-one correspondence between eigenfunction and 

energy eigenvalue. However, all the quantum systems do not respond to this one-to-one 

correspondence. In fact, the eigenstates correspond to a single energy eigenvalue. 

Mathematically, 

Ψ𝑖;  Ψ𝑗;  Ψ𝑘….⏞        → 𝐸𝑛       (6) 

 

This type of system is called a “degenerate system”. Let us consider few simple 

examples of these type systems as follows. 

 

2D-Harmonic Oscillator 

The Hamiltonian of this model is, 

𝐻 =
𝑝𝑥
2

2
+
𝑥2

2
+
𝑝𝑦
2

2
+
𝒴2

2
      (7) 

 

Here, the wave function is a simple product of wave function in x direction and wave 

function in y-direction i.e. 

Ψn(𝓍, 𝒴 ) =  𝜓𝑛𝑥(𝑥) 𝜓𝑛𝑦(𝒴)     (8) 

 

One can see that two different symbols 𝑛𝑥;  𝑛𝒴 are related with each other by the 

linear addition rule i.e. 

𝑛 = 𝑛𝑥 + 𝑛𝒴        (9) 
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For example, 

(i)𝑛 = 0 ⟶ 𝑛𝑥 = 0; 𝑛𝒴 = 0   

(ii)𝑛 = 1 ⟶ (𝑛𝑥 = 1; 𝑛𝒴 = 0)(𝑛𝑥 = 0; 𝑛𝒴 = 1)      

 

For n=1, we have two different wave functions. Mathematically n=1 is a degenerate 

state, where as n=0 is non-degenerate in nature. Similarly, all higher states are degenerate 

in nature. Now, the energy level of this 2D-oscillator is, 

𝐸𝑛 = (𝑛 + 1)         (10) 

 

For n=1, 𝐸2 = 2 and we have to eigenstates. 

 

3D-Harmonic Oscillator 

Consider a three-dimensional Harmonic oscillator Hamiltonian as, 

𝐻 =
𝑝𝑥
2

2
+
𝑝𝒴
2

2
+
𝑝z
2

2
+
𝑥2

2
+
𝒴2

2
+
𝑧2

2
                (11) 

 

having energy eigenvalue 

𝐸𝑛 = 𝑛 +
3

2
                   (12) 

 

where 𝑛 = 𝑛𝑥 + 𝑛𝒴 + 𝑛𝑧. The corresponding wave function is, 

Ψ𝑛(𝑥, 𝒴, 𝑧) =  𝜓𝑛𝑥(𝑥) 𝜓𝑛𝑦(𝒴)  𝜓𝑛𝑧(𝑧)               (13) 

 

For n=2, we have 6 no of wave functions as 

𝜓2,0,0;  𝜓0,2,0; 𝜓0,0,2; 𝜓1,1,0; 𝜓0,1,1; 𝜓1,0,1 . In fact, it a 6-fold degenerate system. In general, 

interested reader will notice that total no of wave functions for a given energy is 
(𝑛+1)(𝑛+2)

2
. 

 

Two – Dimensional Box 

Here, we consider a two-dimensional box having side “a”. Potential in this system can be 

expressed as  

𝑉 (𝑥, 𝒴) = 0,0 ≪ 𝑥 ≪ 𝑎; 0 ≪ 𝒴 ≪ 𝑎     (14) 
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The wave function of the system is, 

𝛹𝑛𝑥,𝑛𝒴(𝑥, 𝒴) = 𝜓𝑛𝑥(𝑥) 𝜓𝑛𝑦(𝒴)      (15) 

 

Where, 

𝜓𝑛𝑥(𝑥)  =  √
2

𝑎
 sin (

𝑛𝑥𝜋 𝑥 

𝑎
)                 (16) 

𝜓𝑛𝑦(𝒴) =  √
2

𝑎
 sin (

𝑛𝒴𝜋𝒴 

𝑎
)                                           (17) 

 

Energy level of the system is, 

𝐸𝑛 =
ℎ2

8𝑚𝑎2
𝑛2                                      (18) 

 

where 𝑛2 = 𝑛𝑥
2 + 𝑛𝒴

2  . For 𝑛2 = 5,  we have (1,2) ; (2,1). This means, there is a 

twofold degeneracy in the system. Here, the ground state is non-degenerate having energy, 

𝐸2 = 
ℎ2

4𝑚𝑎2
→ Ψ1,1(𝑥, 𝒴)       (19) 

 

Three-Dimensional Box 

As above in a three-dimensional box, we have the potential of the form, 

𝑉 (𝑥, 𝒴, 𝑧) = 0,0 ≪ 𝑥 ≪ 𝑎; 0 ≪ 𝒴 ≪ 𝑎; 0 ≪ 𝑧 ≪ 𝑎             (20) 

 

The wave function of the system is, 

Ψ𝑛𝑥 ,𝑛𝑦,𝑛𝑧(𝑥, 𝒴, 𝑧) =  𝜓𝑛𝑥(𝑥) 𝜓𝑛𝑦(𝒴)  𝜓𝑛𝑧(𝑧)   (21) 

 

Where, 

𝜓𝑛𝑥(𝑥)  =  √
2

𝑎
 sin (

𝑛𝑥𝜋𝑥 

𝑎
)      (22) 

 𝜓𝑛𝑦(𝒴) =  √
2

𝑎
 sin (

𝑛𝒴𝜋𝒴

𝑎
)      (23) 

 𝜓𝑛𝑧(𝑧) =  √
2

𝑎
 sin (

𝑛𝑧𝜋 𝑧 

𝑎
)      (24) 

 

Energy level of the system is, 

𝐸𝑛 =
ℎ2

8𝑚𝑎2
𝑛2              (25) 
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Where 𝑛2 = 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2. For𝑛2 = 27, we have (5,1,1); (1,5,1); (1,1,5); (3,3,3). 

This means, there is a fourfold degeneracy in the system. Here, the ground state is no-

degenerate having energy, 

𝐸3 = 
3ℎ2

8𝑚𝑎2
→ Ψ1,1,1(𝑥, 𝑦, 𝑧)                           (26) 

 

Hydrogen Atom 

𝐻 =
𝑝2

2
−
1

𝑟
                   (27) 

 

The energy level of the system is, 

𝐸𝑛 = −
1

2𝑛2
                    (28)  

 

Further, wave function of the system is Ψ𝑛𝑙𝑚 . For a given n, the total no of 

degeneracy of the system is 𝑛2. For example, n=2, there are 4 no wave functions i.e (2,0,0); 

(2,1,0); (2,1,1) ;(2,1,-1). In above we notice that degeneracy is a common feature in higher 

dimension. However, here we discuss degeneracy in 1D-harmonic oscillator as follows 

under the influence of a perturbation. 

 

Harmonic Oscillator Under Complex Perturbation 

Interesting feature of the harmonic oscillator is that its wave function is simple to handle in 

practice. For example, 

Φ0 >=
1

π1/4
𝑒−

𝑥2
2⁄                   (29) 

Let us calculate ⋋= ±1, using HO low level wave functions as, 

< Φ0−
𝑖

𝑥
𝑝 = −

1

𝑥 

𝑑

𝑑𝑥
Φ0 > = 1                          (30) 

 

Similarly, using suitable recurrence relation [2], one will find, 

< Φ1−
𝑖

𝑥
𝑝Φ1 > = −1              (31) 

 

If this term can be added to 𝐸𝑛,we find that, 

𝐻𝐷 = 𝐻 −
𝑖

𝑥
𝑝                 (32) 

< Φ𝑛𝐻𝐷Φ𝑛 > 0,1 = 2              (33)  
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  In fact, we have made eigenvalues of ground state and first excited state are the same, 

even though they possess different eigenfunctions. Now, extending this to higher excited 

states we find.  

< Φ𝑛−
𝑖

𝑥
𝑝 Φ𝑛 >= −< Φ𝑛

1

𝑥
 Φ′𝑛 >= ±1   (34) 

 

Here the +1 sign for even states including  0 i.e., n=0,2,4,6,8…and -1 for 

n=1,3,5,7…… Now, combining this we get 

< Φ𝑛− 𝐻𝐷 Φ𝑛 >=∈n= 2,6,10,14…     (35) 

 

More explicitly above relation is to be interpreted as 

< Φ𝑖𝐻𝐷Φ𝑖 >=< Φ𝑖+1𝐻𝐷Φ𝑖+1 >=∈𝑖 (𝑖 = 0,2,4)  (36) 

 

DISCUSSION 

In nature, we come across twins, which are indistinguishable in their physical feature. In 

Mathematics, we also come across twin number such as (2,2). Using simple algebra, one 

can generate set of twin numbers as follows. Suppose we have all positive odd integers such 

as 1,3,5,7,9………. In this numbers we find that even numbers are missing. Now we want 

that entire odd numbers to be converted to even number such that adjacent numbers will 

have the same value. Then simple way is to add +1 to lower number and subtract the same 

from the next higher number. In this procedure we will get (2,2) ; (6,6) ; (10,10); (14,14) so 

on so. This is done with elementary algebra of addition and subtraction. The above 

mathematical analysis is related to a physical problem of simple oscillator using the method 

of integration and differentiation as discussed above. From physics point of view, we find 

that a simple perturbation (
−𝑖

𝑥
𝑝)  in 1D harmonic oscillator can reflect degeneracy. In fact, 

all even state eigenvalue is increased by +1 and odd state eigenvalue decreased by -1. As a 

result, two consecutive levels reflect the same eigenvalue. In other words, eigenvalues of 

𝐻𝐷 are (2,2); (6,6); (10,10), (14,14). It should be borne in mind that the perturbation terms 

are PT-symmetry in nature [5,6]. In fact, behavior of Parity (P) in a quantum system is as 

follows: 

𝑃𝑥𝑃−1 = −𝑥; 𝑃𝑝𝑃
−1 = −𝑝; 𝑃𝑖𝑃−1 = 𝑖 . Similarly, T (time-reversal) operator has 

the following behavior 𝑇𝑖𝑇−1; 𝑇𝑝𝑇
−1 = −𝑝; 𝑇𝑥𝑇

−1 = 𝑥. Hence interested reader will notice 

that the perturbation term 𝐻1 =
−𝑖

𝑥
𝑝  is PT—symmetric. Mathematically, [𝐻1, 𝑃𝑇] = 0 . 

Hence, it is not difficult to show that the Hamiltonian is PT-symmetric in nature i.e., 

[𝐻, 𝑃𝑇] = 0.  Interested reader will notice that simple integration and differentiation can 

change basis understanding of quantum mechanics i.e., from non-degenerate to degenerate 

with the aid of suitable simple term 𝐻1. 
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The method suggested here can be extended to few oscillatory systems having the 

form of Hamiltonians as 

𝐻 = 𝑝2 + 𝑥2 + 𝑥2𝑚 → 𝑚 = 2,3,…                                     (37) 

  

Interested readers will see that under the influence of perturbation 𝐻1, the system will 

reflect degeneracy which gives the importance of generating degenerate oscillatory system.  
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