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Abstract 

Quantum mechanics has completed century since its genesis. Quantum mechanics is taught at various levels-starting 
from school and colleges to universities. Regression methods are introduced at under graduate and post graduate 
levels to solve Schrodinger equation for finding solutions of various trivial and non-trivial physical problems. The 
common problems, which students encounter at UG level are- particle in a box, potential step and barriers, harmonic 
oscillator and hydrogen atom. It has been observed that students lack clarity in solving and grasping the hydrogen 
atom problem. Two reasons can be accounted for this. It is perhaps a lengthy derivation and students, many times, 
are not well acquainted with the requisite knowledge of Spherical Polar Co-ordinate system. In this article, a brief 
review on the birth of quantum mechanics is presented judiciously discussing the contribution of Schrodinger, 
before solving the hydrogen atom problem. Readers are first introduced to spherical-polar coordinate system. The 
radial solutions, radial probability distribution functions, and hydrogen orbital, are plotted using Mathematica 
software v.12, for the sake of visualization and understanding   . 
 

 

 

INTRODUCTION 

The spectra of many elements have been known, since 19th century. The emission and absorption 
of different, but of definite wavelengths (i.e. color) radiations, work like a fingerprint to 
recognize chemical elements. In other words, the spectra of atoms are signatures of the electronic 
distribution inside atoms. But the emission and absorption of radiation, in visible spectra, had 
remained a mystery for a century, until Planck gave the idea of quanta and proposed that light 
travels in form of quanta. Quantum mechanics was born in the year 1900, when Max Planck 
derived a formula for black body radiation in order to explain it, for all possible wavelengths 
(Alain& Villain, 2017). Planck introduced the concept of quantization of energy. He proposed 
that radiation travels in form of quanta (i.e. a bundle of energy). In 1905, Einstein introduced the 
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notion of “Lichtquanten” (i.e. quantum of light). Twenty years later, it was named photon. He 
realized the importance of the idea of quantization to explain photoelectric effect. In the year 
1905, also rendered as miraculous year in the history of science, Einstein published three 
historical papers; one dealing with special relativity, another with Brownian motion and the third 
one with photoelectric effect. He used quantum nature of light to explain photoelectric effect. 
Wave nature of light could already explain optical phenomena as interference, diffraction and 
polarization. 

In 1913, the ground breaking discovery of Bohr atomic model further extended the idea 
of quantization, because Bohr postulated that electrons in atoms can move only in definite orbits, 
and it can emit or absorb radiation in form of definite quanta only. The experimental observation 
of hydrogen atom spectra Figure (1) was already reported by contemporary scientists. But, no 
satisfactory theory existed, which could explain it.These developments led Louis de Broglie to 
propose the idea of wave-particle duality in 1923, as a part of his doctoral dissertation. He 
wanted to introduce the idea of “Atom of Light”, but his principal examiner Paul Lanevin 
consulted Einstein regarding this. Einstein, appreciated the idea of wave-particle duality, but 
could not agree with the idea of atom of light. Broglie removed the latter part and obtained his 
Ph.D degree.Broglie re-derived Bohr’s quantization rules (Alain& Villain, 2017). 
 
 

 
Figure 1.Absorption and emission lines in hydrogen atom spectra (H-α lines are most intense) 

  

It had become quite natural for the contemporary physicists to raise question about the 
wave equation; that could be solved to obtain such solutions. In 1926, Schrodinger Figure (2) 
solved problems in a series of papers. In a co-parallel manner, Heisenberg (Heisenberg, 1925) 
Born and Jordan (Born & Jordan, 1925) published their matrix version of quantum mechanics in 
1925 (Aschman & Keaney, 1989; Reiter &Yngvason, 2013; Fedak & Jeffrey 2009). Modern 
quantum mechanics was born, when Schrodinger demonstrated equivalence with their matrix 
formalism by exactly solving the hydrogen atom problem and explain it’s spectra.  
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Figure 2. Left: Erwin Schrodinger (1887-1961) (Courtesy: R. Braunizer 1926); Right: Tomb of 

Schrodinger and his wife with plaque imprinted with his famous equation (Courtesy: C. Joas 2008) 

 

A relativistic version of his equation came within a year. Klein, Gordon and Fock gave 
relativistic equation for a free particle. The relativistic treatment of hydrogen atom was 
introduced by P. A. M. Dirac in 1928.Opposite to matrix calculus of Heisenberg, Schrodinger’s 
approach is quite simple. Schrodinger equation can be derived considering spatial distribution of 
the amplitude of the wave ψ(x), at a fixed point in time as follows- 
 

డమந(୶)
డ௫మ

+ ସగమந(୶)
ఒమ

= 0; 				݇ = ଶగ
ఒ

ߣ	& = ℎ/(1)  ݌ 

డమந(୶)
డ௫మ

+ ସగమ௣మந(୶)
௛మ

= 0; ݌		 = ඥ2݉(ܧ − ܸ)  (2) 

డమந(୶)
డ௫మ

+ ଼௠గమ(ாି௏)ந(୶)
௛మ

= 0                                        (3) 

  
The premises of quantum mechanics have gotten developed tremendously, since its birth 

in the beginning of 20th century. Almost every walk of science needs it, especially when the 
problem is rooted at the bottom of the scale. From nanoscience to cosmology, its knowledge has 
become mandatory in order to fully narrate natures beauty in terms of mathematical formalism. 
Here, the exact solution of hydrogen atom, using Schrodinger equation is obtained in a greater 
detail in a pedagogical manner. 
 
 
MATHEMATICAL ANALYSIS 
Though, hydrogen atom problem has become a century old problem and numerous text books 
(Ghatak & Loknathan, 2004; Schiff & Bandhyopadhyay, 2017) (Feynman, 2015) and documents 
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are available to solve it including online references (Chapter-10 The Hydrogen Atom) we shall start 
with a fresh cumulative approach. We shall first convert three-dimensional Schrodinger equation 
from Cartesian coordinate system to spherical coordinate system.   
 
 

Schrödinger Equation in Spherical Polar Coordinates 

The vector representations of unit vectors r, θ and ϕ are as shown in Figure (3). 

    rrdrdrrrdrd ˆˆˆ 


  (4) 




















 





drdrdr
r
rrrdr .

ˆ
.

ˆ
.

ˆˆ
 (5)

 

r
r
r
rr









ˆ  













r

rˆ  













r

rˆ

 (6)

 

zryθrxθrr ˆ cosˆ sinsinˆ cossin       (7) 

zyθxθ
r
r ˆ cosˆ sinsinˆ cossin  



 (8)
 

zryθrxθr
θ
r ˆ sinˆ sincosˆ coscos  



(9) 

0ˆ cossin sinsin 

 yrxrr






 (10)
 

So, we have- 
zyxr   cosˆ sinsin cossinˆ    (11) 

zyx   sinˆ sincos coscosˆ    (12) 

yx ˆ cos sin   
    (13) 

Now, we have - 

0



r
r ;  0 sinˆ sincos coscos






 zyxr


  (14)  

 







 sin0ˆ cossin sinsin 

 yxr

 (15)
 

Substitution gives us: 



                European J of Physics Education  Volume 10 Issue 4 1309-7202      Singh 

 

 5 


  sin  drrdrdrrd        (16) 

fdfrdrr          (17) 

rdfdfd
r

frd
r
ffd 

.... 










 



       (18)

 

 

   sin  . .. 0 drfdrfrdrfrdrf     (19) 



















f

r
ff

r
f

r
ffr .

sin
1..1

               (20)
 


















sin
11

rrrr
r



                            (21)
 

2

2

22
2

2
2

sin
1sin

sin
11.




 































f

r
f

r
f

r
r

rr
f

  (22) 

 

The Hydrogen Atom Problem: The Cartesian coordinates x, y, z can be written in terms 

of Spherical polar coordinates as follows - 

 
Figure 3.Vector representations of unit vectors r, θ and ϕ 

 

 cossinrx    (23) 

 sinsinry    (24) 
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cosrz     (25) 

Here,   and   are the angles made by the radial vector r, joining point P to the origin 

and its components along X, Y and Z axis respectively Figure (4). 

 

 
Figure 4. Radial vector r joining point P to the origin and its components along X, Y and Z axis 

respectively 

 

The Schrodinger equation in Spherical coordinates is given by: 

  02
22

2

2

2

2 









 VEm

zyx   (26)
 

The above Schrodinger equation in spherical polar co-ordinate system can be written as: 

 VEm
rrr

r
rr

































22

2

22
2

2

2
sin
1sin

sin
11





 =0  (27) 

We have, 

r
eV

0

2

4


  (28) 

Multiply both sides of the above equation by 22 sinr , we get 

0
4

sin2sinsinsin
0

2

2

22

2

2
22 









































r
eEmr

r
r

r 








  (29)
 

Using separation of variable, we can write the wave function as follow: 
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         rr ,,    (30) 

Substituting   as above and divide both sides of the equation by , we obtain - 

 
 

 
 

 
  0

4
sin21sinsinsin

0

2

2

22

2

2
2

2














































r
emr

r
rr

rr 

















 (31)
 

We can rearrange the terms as follows– 

 
 

 
 








































r
emr

r
rr

rr 0

2

2

22
2

2

4
sin2sinsinsin














   (32)

 

 
 
2

21



 


  

The right hand side of the above equation is compared with the square of a quantum 

number me - 

 
  2
2

21
lm










   (33)
 

    02
2

2





 



lm
 (34)

 

This yields a solution - 

   mAe l
i    (35) 

Here, ml is called magnetic quantum number. 

0lm , 1 , 2 , 3 , ……………… 

We can re-write the Schrodinger equation as – 

 
 
























 r
emr

r
rr

rr 0

2

2

2
2

2

4
2sin




  
 


















rr
ml





 sinsin 2

2

  (36)
 

 
 
























 r
emr

r
rr

rr 4
21 2

2

2
2

  
 
























sin
 sin
1

sin 2

2

r
ml

 (37)
 

 
In above equation, we have obtained L.H.S. and R.H.S. as a function for r and  co-

ordinates separately. Both sides give differential equations, which can be solved by comparing 
the equations with a constant. Here, in this case, it is  1ll . So, we have – 
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 
    01

4
211

2
0

2

2
2

2 










 
























 r
ll

r
emr

rrr 


   (38)
 

 
    0

sin
1sin

 sin
1

2

2
























 





lmll
r    (39)

 

The above equations can be re-written as follows - 

      01
4

21
2

0

2

2
2

2 










 






















 r

r
ll

r
em

r
rr

rr    (40)
 

      0
sin

1sin.
sin

1
2

2































lmll

r    (41)
 

 
Application to Hydrogen Atom 

Radial Part 

Now, we have the radial equation of Hydrogen atom given by – 

      0
 2

122
2

22

22

2








 














 r

r
ll

r
zer

rrr 
 


  (42) 

Since, in atom electrons remain in bound state – 

E < 0, we can use E = - |E| 

Let us introduce new variables: 

r
2

1

2

8







 





   (43) 

2
1

2

2 


















ze

  (44)
 

Substituting   and   from eq. (43) and (44) into (42) – 

          0
4
112

22

2



















 rrllrr




   (45)
 

For the case of large   values, the equation (45) reduces to a simpler form as a special 

case. 
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    0
4
1

2

2



 rr
   (46)

 

The solution for eq. (46) is 2
e  , but the function must not diverge for  , thus, the 

acceptable general solution for bound state can be taken as – 
 

 


ue .2    (47) 

Substitution gives us – 

        01121
2 22

2








 




























 ulluu

  (48)
 

Let us use a power series as a solution, such that – 

     

n

rrn
n Fau    (49) 

Substitution of eq. (49) into eq. (48) yields – 

                0111122

2
2 

















 FlrrrFrF

  (50)
 

As a trivial case, 0 , which yields  

lr   and  1 lr    (51) 

For finite solution at the origin, the acceptable solution is lr   because r= (l-1) will 
make the  
series singular at 0  
 

Now, eq. (50) becomes –  

        01122
2

2
































 FlFlF   (52) 

Substitution of  F in form of a series gives – 

     


























0
11111

n
nn allann 




       (53)
 

We obtain – 

     





 

0

1
1 01221

n

n
nn anlalnn 

      (54)
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Since, relation expressed by eq. (54) holds good for all value of , we get the following 

recursion relation – 

  22 1
11







lnn
ln

a
a

n

n 

  (55)
 

For large n, we have  

01~1



na

a

n

n

  (56)
 

Since, series given by eq. (55) must terminate for some value of n say nr, we have. 

1 lnn rp    (57) 

Here, np is the principal quantum number. Now, we have the energy eigen value – 

22

42

 2
 

p
n n

eZE
p 




  (58)
 

Wave function 

We have obtained the recursion relation – 

   nn a
lnn

lna  
22 1

1
1 






 (59)
 

   22 1
1

1 


 lnl

nln
a p

n
 (60)

 

   
   

 
 

 
   lnn

lnn
lnn

lnn
lnn

lnn
a pppn

n 2 1
1

.
12 

.
22 1

1
1 1

1 










 

  ……….  
  0  

22 .1
1 a

l
ln



  (61) 

 

This recursion relation determines the power series expansion of  F . If we try to obtain 
the first few terms of the series  F , We can observe that it closely matches with the terms of 
Associated Laguerre polynomials Laguerre polynomials can be represented by following 
expression – 
 

   xr
r

r
x

r ex
dx
dexL 

  (62)
 

Associated Laguerre polynomials are defined by – 

   xL
dx
dxL q

q
r 2

2


  (63)
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First few of the Laguerre polynomials are given as follows: 

 

  10 xL  

  xxL 11     

  2
2 42 xxxL       

  32
3 9186 xxxxL    

 

Remember we have – 




























222

22
1

222
1

2 cZe
c

Ze
E

Z l 





   (64)
 

2

222

2n
cxZ 

 r
an
Zr

n
cZr

ne
Zcr

e
Eb

pp 2
22

22222
1

2

2248














 (65)

 

 

The solution  F  is given by – 

    12 
 l

lnLF   (66) 

   


122
,





 l

ln
l

ln Le  (67) 

The normalization of the wave function gives – 

  1
0

1222 





   l
ln

l LeA
 (68)

 

  1
1

2 3
2 





ln

lnnA
 

 
2

1

32
1













lnn

lnA
  (69) 

So, the normalized radial wave function can be written as – 

    







































 





0

12

0

2
1

3

0
,

22
 2

12
0

na
ZrLe

na
Zr

lnn
ln

na
Zr l

ln
na

zrl

ln

  (70)
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Here, 
0

2
na
Zr

  

The first radial wave functions for hydrogen atom are given by – 

  0

2
3

0
0,1 2 a

Zr
e

a
zr













  (71)
 

  0

0

2
3

0
0,2 2

1 a
Zr

e
a
zr

a
Zr






















 (72)
 

  0

0

2
3

0
1,2 223

1 a
Zr

e
a
zr

a
Zr













          (73)
 

  03
2
0

22

0

2
3

0
0,3 27

2
3
21

2
a

Zr
e

a
rZ

a
Zr

a
Zr






















  (74) 

The Polar Angle Equation 

The angular part with  can be re-written as – 

   



































 sinsinsinsin

  (75)
 

   















 2

2

sincossin








    (76)

 

   















 cossinsin 2

2
2

    (77)
 

Now angular equation in  becomes:- 

          0  sin1cossinsin 22
2

2 















 lmll
  (78)

 

Let us use a new variable, cosx , we have -  

 

         
x
x

x
xx
























 sinsin .

  (79)
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       




































 x

x
x

xx
x

x
x .sincossin2

2

   
2

2
2sincos

x
x

x
x








 
 (80)

 

Substitution gives us – 

     


























x
x

x
x

x
x

 sincossincossinsin
2

22

  (81)
 

      0 sin1 22  xmxlb e    (82) 

Dividing both sides by 2sin , we get – 

              0
1

 1 21 2

2

2
2 











 x
x

mxll
x
xx

x
xx x

 (83)
 

This is associated Legendre equation. Its solutions are given by associated Legendre 

polynomials as follows: 

       xP
dx
dxxP em

m
mm

em
211 

  (84)
 

Here, Legendre polynomials  xPe  are given by – 

     ll

l

l

l

e x
dx
d

l
xP 21

2
1







   (85)
 

 

The first few associated Legendre polynomials are given by – 

  10,0 xP      xxP 0,1   2
1,1 1 xxP   

  2
1,2 13 xxxP     2

2,2 13 xxP   

 

 The complete wave function for angular parts can be written as – 

 

           
    


 im

omml
m

ml eP
mlL

mllY 


  cos
4

 121 , ,,

      (86) 

 

   13
2
1 2

0,2  xxP  
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Table 1. First six radial wave functions of hydrogen atom 

 

First six radial wave functions ψ(r)  R as shown in Table-1 and its square functions 
ψ2(r) (i.e. Radial probability distribution function) are plotted, respectively in Figure (5). 
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Visualization of Radial Function  
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Figure 5.First six radial wave functions ψ(r)  R as shown in Table-1 and it’s square functions;ψ2(r) 
(i.e. Radial probability distribution function),  respectively. These curves are plotted using Mathematica 

Software. 
 

Twenty hydrogen orbitals are  plotted using Mathematica Software for visualization as shown in 
Figure (6). 

 

  

 

 

        

 n=2, l=0, m=0 n=2, l=1, m=0 n=2, l=1, m=1 

n=4, l=3, m=3 
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n=3, l=0, m=0 n=3, l=1, m=0 n=3, l=3, m=0 

n=3, l=1, m=1 n=3, l=2, m=1 n=3, l=2, m=2 



                European J of Physics Education  Volume 10 Issue 4 1309-7202      Singh 

 

 19

      

 

     

 

 

      

n=4, l=0, m=0 n=4, l=1, m=0 n=4, l=2, m=0 

n=4, l=3, m=0 n=4, l=1, m=1 n=4, l=2, m=1 

n=4, l=3, m=1 n=4, l=2, m=2 n=4, l=3, m=2 
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Figure 6. Twenty hydrogen orbitals are  plotted using Mathematica Software for visualization. Their 
respective quantum numbers n, l and m are below the figures. 

 

Readers may develop their own computer programs for Figure (5) and Figure (6) using 
available books (Wolfram 1996)  on Mathematica Software . 

 

CONCLUSION 

The author hopes that the hierarchy of ideas systematically presented, will result into easy 
understanding of the problem,at under graduate level. The graphical presentations may 
encourage young students and their tutors to visualize the rigorous and comprehensive solutions, 
thus obtained, using Mathematica Software, and help them to grasp this important concept in 
order to apply quantum mechanics to more complicated physical problems. 
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