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Abstract 

A theoretical analysis is presented, showing the derivations of seven different linearization equations for the 

conical pendulum period T, as a function of radial and angular parameters.  Experimental data obtained over a 

large range of fixed conical pendulum lengths (0.435 m – 2.130 m) are plotted with the theoretical lines and 

demonstrate excellent agreement.  Two of the seven derived linearization equations were considered to be 

especially useful in terms of student understanding and relative mathematical simplicity.  These linear analysis 

methods consistently gave an agreement of approximately 1.5% between the theoretical and experimental 

values for g, the acceleration due to gravity.  An equation is derived theoretically (from two different starting 

equations), showing that the conical pendulum length L appropriate for a second pendulum can only occur 

within a defined limit: L  [ g / (4  2)].  It is therefore possible to calculate the appropriate circular radius R or 

apex angle (0     / 2) for any length L in the calculated limit, so that the conical pendulum will have a one 

second period.  A general equation is also derived for the period T, for periods other than one second. 

Keywords: Conical pendulum, theoretical linearization, experimental results 

 

 

INTRODUCTION 

 

The physics of an oscillating pendulum (simple and conical) can often be considered as 

somewhat challenging for pre-university students (Czudková and Musilová, 2000), but should 

not pose a significant problem for typical undergraduates.  Conical pendulum lengths 

investigated experimentally (and published) usually range from approximately 20 cm 

(Tongaonkar and Khadse, 2011) up to greater than 3 m (Mazza, Metcalf, Cinson and Lynch, 

2007). 

The typical conical pendulum is a comparatively standard experiment that is frequently 

included in undergraduate laboratory syllabi.  In some cases, the aim of the experiment is for 

undergraduate students to have the opportunity to design and then perform an experiment (either 

individually, or in a small team of up to three students).  It is usual for students to record 
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appropriate data in tabular form using suitable readily available software (such as Excel).  The 

conical pendulum is also used to teach energy and angular momentum conservation (Bambill, 

Benoto and Garda, 2004) and potential energy (Dupré and Janssen, 1999) as well as the 

rotational dynamic interactions of classical mechanical systems (Lacunza, 2015). 

Although the present work restricts the conical motion to being in a horizontal plane, it is 

possible to extend the mathematical analysis to three dimensions (Barenboim and Oteo, 2013).  

In the case of horizontal planar motion, this is frequently observed to be elliptical rather than 

truly circular, which has been studied in detail to determine the nature of orbital precession 

(Deakin, 2012).  String tension measured as a function of the period (or rotational speed) has 

been documented, and is easily understood by pre-university (or first year university) students 

(Moses and Adolphi, 1998). 

Based upon several years of experience acquired at The Petroleum Institute, the standard 

conical pendulum experiment is relatively straightforward for students to understand, then set up 

and obtain acceptable data.  The principal aim of the conical pendulum as a design experiment is 

for students to investigate how the conical pendulum period T could depend on the radius R of 

the conical pendulum path, or on a measured angle as the physical variable.  The experimental 

data analysis can be used to determine a value for g the acceleration due to gravity, (if the length 

of the conical pendulum is known), or the length L can be calculated assuming a value for the 

acceleration due to gravity. 

 

 
 

Figure 1. Conical Pendulum Schematic 

 

The pendulum mass (frequently referred to as a “bob”) performs uniform horizontal circular 

motion over a range of circular radii such that 0 < R < L (where L represents the length of the 
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pendulum string).  It should be noted that the string is considered to be both mass-less and 

inextensible as well as being effectively devoid of air resistance (as is the pendulum mass itself). 

 

The present purpose is to extend the effectiveness of this experiment by enabling students to 

produce suitable linear data, using one of the linearization methods that are derived in the 

subsequent theoretical section.  Excel can then be used to prepare a straight-line chart, including 

a linear regression analysis, from which the slope (and) or the intercept can be used to obtain an 

unknown physical parameter (g or L).  For the analysis that follows, it is not necessary to restrict 

the orbital period to approximate isochronous behavior, which would be the standard approach 

for analyzing the planar oscillations of a simple pendulum. 

The analysis presented below applies to the full range of radii (subject to the physical 

restrictions that R  L and   ( / 2), even though mathematically, the analysis allows for these 

unphysical limits).  The physical implications of R = L and  = ( / 2) will be considered at the 

appropriate point(s) later in the analysis. 

 

THEORETICAL ANALYSIS 

 

The seven theoretical linearization analyses presented in this section are all based on the conical 

pendulum figure that is shown in the section above, which defines the appropriate physical 

parameters that will be used for each of the analyses: 

 

DERIVATION OF THE CONICAL PENDULUM PERIOD T 

 

From the figure, the period T can be readily derived for a conical pendulum of length L and with 

apex angle  as shown above, where the subscript c indicates the centripetal acceleration and 

centripetal force acting on the conical pendulum mass: 
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A straightforward re-arrangement of the above gives: 
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In the form shown by the equation derived above for the period T, the conical pendulum 

period can be seen to be a definite function of the circular radius R although the functional 

relationship is neither straightforward nor linear.  This functional relationship is illustrated in 

Chart 1 (Appendix 1), for nine different theoretical values of L along with the appropriate 

experimental data.  The lengths of the conical pendulum for the experiments were in the range 

0.435 m – 2.130 m (the theoretical and experimental data for specific lengths are indicated in the 

chart legend).  Data for L = 0.199 m is included and referenced (Tongaonkar and Khadse, 2011).   
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For details of all the charts and the chart legend (which applies for all charts) refer to the 

Appendices. 

Inspection of Chart 1 (Appendix 1) and the equation for the period, shows that the horizontal 

axis intercept (for T = 0) occurs for when R = L, whereas the vertical axis intercept occurs when 

the period T is the same as for a simple pendulum of the same length (with motion confined to 

the x‒y or z‒y plane for example, see Figure 1). 

It is possible (and considered to be analytically desirable) to re-express the functional 

relationship between the conical pendulum period T and either the circular radius R, or the apex 

angle  (or alternatively the angle  measured with respect to the horizontal) to achieve 

linearization.  Several straightforward methods of accomplishing the mathematical linearization 

are presented below and the most appropriate method(s) for ease of student use is specified in a 

later part of this analysis.  Each of the charts that are shown contains both the theoretical 

calculations and experimental data values. 

 

Linearization – Method 1 

The starting point for this analysis is the period equation that was derived above, which is then 

squared as shown.  
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Chart 2 (Appendix 1) demonstrates this very straightforward method of linearization that 

directly produces a straight line passing through the origin of coordinates, which then enables the 

acceleration due to gravity g to be easily calculated from the slope.  The mathematical analysis is 

uncomplicated and should be readily understood by typical students.  By using a standard linear 

regression with the condition that the straight line should pass through the origin, this 

linearization method should produce good results. 

 

Linearization – Method 2 

The period equation that was derived earlier can be developed further to give,  
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Although this analysis gives rise to an equation that involves the fourth power of the period T 

as a function of the conical radius squared, the equation is basically nothing more than a straight 

line, with a positive intercept that depends on the length L of the conical pendulum, and a 

negative slope that is independent of L.  This can be clearly seen in the Chart 3 (Appendix 1), 

which shows the theoretical parallel straight lines and the experimental data that are displayed in 

Chart 1 (Appendix 1). 

It can be noted that as a student exercise, it is possible (in principle) to calculate a value for L 

the length of a conical pendulum if this is not known in advance, when a value for the 
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acceleration due to gravity g is provided.  This is readily determined by calculating the numerical 

ratio of the vertical axis intercept divided by the slope, which gives L2 and therefore L.  

Therefore, various values of L can be used by different student groups. 

By referring to the linearization equation, it can be observed that the point where the line 

intercepts the horizontal axis corresponds to the situation where R2 = L2 so that L could be 

obtained directly. 

Alternatively, if the pendulum length L is given, then both the slope and intercept can be used 

to calculate separate values for the acceleration due to gravity g.   

 

Linearization – Method 3 

The first analysis can be extended and re-arranged to make use of the fact that the straight line 

intercept c = (mL2) in the following way: 
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In this form, the linearization gives rise to a straight line with positive slope m passing 

through the origin of coordinates (which corresponds to the mathematical condition that T = 0 

when R2 = L2).  Although in practice this situation is clearly physically unattainable since it 

would require that the pendulum speed v = , it is nevertheless mathematically precise and could 

be pointed out to students. 

Inspection of the above linearization equation shows that the single straight line passes 

through the coordinate origin and has a constant positive slope that is independent of the 

pendulum length L.  Consequently, therefore, all experimental data points (for all lengths of 

conical pendulum) will fit on the same straight line. 

It is of interest to note that experimentally, having a large value for the conical pendulum 

length L would be highly beneficial in terms of obtaining good results compared to using a 

smaller length pendulum.  This linearization is shown in Chart 4 (Appendix 1). 

By knowing the conical pendulum length L and using the fact that theoretically the straight 

line must pass through the coordinate origin, it is only necessary for students to use suitable 

linear regression analysis, with the requirement that the trend-line line passes through the origin.  

It is then a simple matter for students to calculate a value for g (the local acceleration due to 

gravity) from the slope. 

 

Linearization – Method 4 

Starting with the linearization equation derived above, further analysis gives: 
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This is calculated and shown in Chart 5 (Appendix 1). 
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All experimental data points must lie on a single straight line of constant positive slope having 

a value of exactly m = ¼ and with a vertical axis intercept that is independent of the conical 

pendulum length L.  The intercept of the straight line on the vertical axis can be used to provide a 

value for g the local acceleration due to gravity.  It can be seen that where the straight line 

crosses the horizontal axis, requires ln(T) = 0 (which therefore corresponds to the conical 

pendulum having a period T = 1 second).  The physical consequences of this are outlined below. 
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Inspection of the final equations in the above analysis shows that the conical pendulum length 

L that is appropriate for a second’s pendulum, falls within a precisely defined range.  This range 

limit for L will re-occur at the end of a subsequent derivation in a later section, and will be 

considered in context with the simple pendulum. 

This linearization analysis is considered to be somewhat complicated for use by most students 

taking a first level Physics course.  As a result, the application of logarithmic functions by 

students to experimental data analysis and interpretation is avoided whenever possible.  This is 

due to an intrinsic lack of in-depth understanding of the logarithmic function and how these 

should be treated. 

 

Linearization – Methods 5 & 6 

By making reference to the conical pendulum figure, it can be noted that the following two 

trigonometric functions can be obtained: 
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It now becomes a simple matter to substitute for R to give the following: 
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This is once again in the same format as the first linearization analysis where the intercept c 

equals the slope m and gives rise to the following two equations: 
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The first linearization equation is shown in Chart 6 (Appendix 1), which again includes the 

theoretical straight lines and the experimental data sets that were shown in Chart 1 (Appendix 1) 

earlier:  It is interesting to make note of the fact that the horizontal axis intercept occurs at 

exactly 1 is a direct result of the fact that T = 0 when  = /2 rad (or 90).  This mathematical 

result can be thought of as defining an “anchor” point on the horizontal axis, for the straight-line 

data chart. 

An alternative substitution for the conical pendulum radius R (using the second equation for 

the cosine function in place of the sine) will give rise to the linearization shown in Chart 7 

(Appendix 1).  For this representation, the origin of coordinates is obtained as a direct result of 

the fact that T = 0 when  = ( / 2) rad (or 90).  As a result of the straight line passing through 

the coordinate origin, this analysis is slightly more preferable for student use, when compared to 

the linearization of Chart 6 (Appendix 1).  When experimental data is plotted as a chart, it can be 

used to obtain a value for either g if L is given, or L if g is provided. 

 

Linearization – Method 7 

It is possible to extend the second version of the two previous linearization equations by taking 

natural logarithms. 
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Using the same data sets as for earlier analyses produces Chart 8 (Appendix 1). 
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This linearization gives rise to a series of parallel straight lines with slope m = ½ and with a 

vertical axis intercept that will provide a value for either g if L is given, or L if g is known.  The 

analysis below uses an abbreviated equation form. 
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Inspection of the final equation above shows (again) that the conical pendulum length that is 

appropriate for a second’s pendulum falls within a well-defined range.  The range of acceptable 

values for the cosine function readily gives the simple analysis below. 
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It is therefore possible to determine the appropriate apex angle for any length within the 

calculated range, such that the conical pendulum will have a one second period.  It is of interest 

to note that in terms of the linearization of a simple pendulum (see later section for full details), 

the above limit equation can be expressed below, where the simple pendulum slope is given by 

mSP (see later). 
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Using the local value for acceleration due to gravity g = 9.79 ms-2 (2 decimal places) gives, L 

> 0.24798 m (24.798 cm).  The standard value for the acceleration due to gravity g = 9.81 ms-2 (2 

decimal places) gives, L > 0.24849 m (24.849 cm). 

This is the same as the small-angle approximation period T for the simple pendulum 

undergoing simple harmonic motion, as shown below setting T = 1: 
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Reference to Chart 1 (Appendix 1) confirms that a horizontal line at T = 1 intercepts all the 

lines for pendulum lengths satisfying the above analysis.  If periods other than one second are to 

be specifically investigated, then a simple re-arrangement of the initial period equation will 

enable such a study, by using: 
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Additional details regarding the functional dependence of the conical pendulum length on 

rotational angular speed and the derivation of the critical length can be obtained from published 

previously published work (Klostergaard, 1976). 

 

LINEARIZATION OF A SIMPLE AND CONICAL PENDULUM COMPARED 

 

Squaring both sides of the familiar SHM pendulum equation readily gives the familiar straight 

line equation, with the square of the pendulum period T 2 being directly proportional to the 

pendulum length L.  For the purpose of comparison with the present work, the nearest equivalent 

linearization for the conical pendulum is also shown.  In the linearization equations, the 

subscripts SP and CP refer to the simple pendulum and conical pendulum respectively. 

It can be observed that these two pendulums exhibit similar physical behavior, which is 

inextricably linked through the mathematical term (4  2 /g) that appears as the slope mSP of the 

straight line for the simple pendulum, and appears squared as the slope mCP of several of the 

conical pendulum linearization equations. 
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Due to the absence of a vertical axis intercept, both T 4 equations provide a simple and direct 

technique of displaying experimental data that yields a straight line passing through the 

coordinate origin.  It can be seen that the slope for both pendula is the same, being the square of 

the slope for a simple pendulum. 
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In terms of experimental usefulness, a single calculation of the slope of the best straight line 

passing through the origin will give g the local value for the acceleration due to gravity.  It is 

noted that the conical pendulum length L remains constant, but not for the simple pendulum. 

 

CONICAL PENDULUM EXPERIMENT AND DATA 

 

When a conical pendulum experiment is performed, there are several parameters that can be 

quantified and measured.  It is usual to have some form of timing measurement to determine the 

orbital period T and some way of measuring any one (or several) of the following: the orbital 

radius R, the cone apex angle  or equivalently, the string angle  measured with respect to the 

horizontal.   

 
Table 1. Experimental Data (*Tongaonkar and Khadse, 2011) 

 

L (m) = 2.130 L (m) = 2.003 L (m) = 1.875 

R (m) Apex (deg) T (s) R (m) Apex (deg) T (s) R (m) Apex (deg) T (s) 

0.200 5.3878 2.940 0.200 5.7305 2.854 0.200 6.1232 2.748 

0.250 6.7404 2.930 0.300 8.6139 2.837 0.300 9.2069 2.736 

0.300 8.0967 2.925 0.400 11.5194 2.829 0.400 12.3178 2.730 

0.400 10.8240 2.905 0.500 14.4554 2.823 0.500 15.4660 2.716 

0.500 13.5764 2.890   
 

    

 

  

0.600 16.3611 2.875             

L (m) = 1.723 L (m) = 1.485 L (m) = 1.252 

R (m) Apex (deg) T (s) R (m) Apex (deg) T (s) R (m) Apex (deg) T (s) 

0.200 6.6657 2.641 0.200 7.7401 2.440 0.200 9.1921 2.246 

0.300 10.0272 2.628 0.300 11.6551 2.441 0.300 13.8639 2.235 

0.400 13.4239 2.617 0.400 15.6262 2.423 0.400 18.6320 2.203 

0.500 16.8694 2.603 0.500 19.6760 2.393 0.500 23.5382 2.176 

L (m) = 1.029 L (m) = 0.825 L (m) = 0.435 

R (m) Apex (deg) T (s) R (m) Apex (deg) T (s) R (m) Apex (deg) T (s) 

0.200 11.2075 2.028 0.200 14.0297 1.806 0.050 6.6003 1.327 

0.300 16.9505 2.002 0.300 21.3237 1.798 0.100 13.2903 1.312 

0.400 22.8753 1.986 0.400 29.0025 1.732 0.200 27.3723 1.286 

0.500 29.0720 1.933             

  
 

*EJPE Data L (m) = 0.199 

   
  

 

R (m) Apex (deg) T (s) 

   
  

 

0.0681 19.9990 0.850 

   
  

 

0.1197 36.9658 0.775 

   
  

 

0.1735 60.6627 0.625 

   
  

 

0.1924 75.1505 0.460 

   
  

 

0.1949 78.4043 0.400 
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The experimental set-up required two slightly different methods of rigid support depending on 

the pendulum lengths L to be investigated.  Initially, a light-weight inextensible string of length 

1.500 m is held between a pair of parallel-sided wooden blocks, which are tightened together 

using clamps.  A concentrically scaled pendulum orbit sheet is placed directly below the clamp. 

Then a spherical steel bob is then connected so that it is just above the center of the orbit sheet 

when it is at a vertical stationary equilibrium. The length of the pendulum is measured from the 

bottom edge of the clamping blocks to the center of the bob. 

A force is applied on the bob at a desired radius R directly along its tangent.  For a single 

measurement at radius R, a digital stopwatch is used to record the time for 5 rotational periods 

(referred to as “orbits” in the experiment).  To ensure consistent accurate measurements are 

obtained, this procedure is repeated at least 5 times.  The radius of the conical pendulum orbits is 

then changed in order to perform the experiment as a function of radius. 

This procedure is then repeated for different radii and lengths.  When sufficient good quality 

experimental data is obtained, the periods and other parameters are calculated and the 

experimental data is plotted on the same chart as the theoretical lines.  The two methods of 

pendulum support (for both a long and short conical pendulum) are shown photographically 

below the data table. 

The table below shows typical experimental data for conical pendulum lengths in the range 

0.435 m  L  2.130 m that were obtained by the authors.  Data previously obtained by other 

authors (Tongaonkar and Khadse, 2011) and published is also indicated in the table below 

((EJPE 0.199 m).   

For pendulum string lengths, more than 1.500 m, the string support clamp is attached directly 

to a rigidly fixed ceiling rod, which maintains a constant (but adjustable) conical pendulum 

length L. 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 
      Figure 2. Short pendulum L    Figure 3. Long pendulum L 
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DISCUSSION OF RESULTS AND CONCLUSIONS 

 

Seven theoretical methods of linearization have been derived for the conical pendulum period 

and all have been plotted (using Excel) on appropriate charts for the length range 0.435 m  L  

2.130 m (with additional calculations for L = 0.199 m).  The charts demonstrate excellent 

agreement between the theoretical analysis and experimental data over the length range 

considered.  Theoretical calculations used the local value of the gravitational acceleration g = 

9.79 m s -2. 

Although all the seven linearization equations are equally capable of providing very closely 

similar values for the local gravitational acceleration, not all the derived linearization equations 

are equally simple to apply.  As a result, the equations are not necessarily all suitable for use by 

students. 

Inspection of the seven theoretically derived linearization equations as well as their 

appropriate charts, suggests that those charts having a straight line passing through the 

coordinate origin would be most appropriate for student use. 

The table below summarizes the experimental results obtained from the three linearization 

charts (Charts 2, 4 and 7) that were considered to be most suitable for undergraduate student 

experimental classes (Appendix 1).  In the table of results shown below, the following is defined: 

g = (Local value) – (Experimental value). 

 
Table 2: Summary of Results (*Tongaonkar and Khadse, 2011) 

 

Theory L 

(m) 
Chart 2 Chart 4 Chart 7 

& Expt L 

(m) 
Slope m Calculated g Slope m Calculated g Slope m Calculated g 

2.130 4.05 9.746 16.41 9.745 74.46 9.745 

2.003 4.08 9.666 16.68 9.666 66.92 9.666 

1.875 4.06 9.721 16.49 9.722 57.97 9.722 

1.723 4.09 9.664 16.69 9.665 49.54 9.665 

1.485 4.09 9.664 16.69 9.665 36.80 9.665 

1.252 4.10 9.628 16.81 9.629 26.35 9.629 

1.029 4.11 9.601 16.88 9.608 17.88 9.608 

0.825 4.14 9.527 17.15 9.532 11.67 9.532 

0.435 4.13 9.558 17.00 9.575 3.22 9.575 

          
 

  

: Average g =  9.642 Average g =  9.645 Average g =  9.645 

:  g =  0.148  g =  0.145  g =  0.145 

:  g =  1.5%  g =  1.5%  g =  1.5% 

*0.199 3.87 10.213 14.77 10.271 0.59 10.271 
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In each of the above three charts, the calculated straight lines were constrained to pass through 

the origin of coordinates (which theory shows to be a necessary physical condition).  It can be 

seen that the theoretical derivations are completely self-consistent and give rise to uniform 

values for the gravitational acceleration, using the experimental data that is presented. 

This analysis method consistently provided an agreement of approximately 1.5% between 

theoretical and experimental values for g, the acceleration due to gravity (the local value being g 

= 9.79 m/s2).    Previously published results (Mazza, Metcalf, Cinson and Lynch, 2007) for 

conical pendulum experiments having a length range that extended up to approximately 3 m 

(actual range: 1.192 m  L  3.411 m) were reported to be usually better than 2%. 

In conclusion, it can therefore be stated that the theoretical derivations have been thoroughly 

tested and confirmed as correct for the range of conical pendulum lengths investigated, including 

previously published results (Tongaonkar and Khadse, 2011) for small L and (Mazza, Metcalf, 

Cinson and Lynch, 2007) for large L. 
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APPENDIX 1. CHARTS FOR THEORETICAL & EXPERIMENTAL RESULTS 

 

 
Chart 1 – Equation 1 

 

 
Chart 2 – Equation 2 

 

 
Chart 3 – Equation 3 

 

 
Chart 4 – Equation 4 
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Chart 5 – Equation 5 

 

 
Chart 6 – Equation 6 

 

 
Chart 7 – Equation 7 

 

 
Chart 8 – Equation 8 

 

 

APPENDIX 2 – CHART LEGEND FOR THEORETICAL & EXPERIMENTAL 

RESULTS 

 

Theoretical and experimental results are indicated from largest conical pendulum length (L = 

2.130 m) to the shortest (L = 0.435 m).  Calculations for L = 0.199 m are also included, with 

experimental data that was obtained by other authors (Tongaonkar and Khadse, 2011) and has 

been previously published (referred to as EJPE 0.199 m). 

 
Figure 2 - Chart Legend 
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APPENDIX 3 – EQUATIONS USED FOR THEORETICAL CALCULATIONS 
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Equation 2 – Chart 2 
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Equation 3 – Chart 3 
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Equation 4 – Chart 4 
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Equation 5 – Chart 5 
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Equation 6 – Chart 6 
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