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Abstract 

In this article a thin optical lens model is considered. It is shown that the limits of its applicability are 

determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but 

above all its geometric type. We have derived the analytical criteria for the applicability of the model for 

different types of lenses. Quantitative estimations were made for practically important cases оf a glass lens in air 

and air lens in water. 
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Introduction 

 

One of the major classes of concepts considered in school and university physics courses are 

physical idealization – the objects not existing and unrealizable in the real world, but having 

their pre-images in it. The ideal models, expressed in an appropriate form of sign, become 

abstract mathematical models, which allow ones to explore them on a quantitative level and 

make the interpretation of the obtained results. 

An important characteristic of such models is the simulation interval. It refers to a 

system of conditions within which the identification of the object with the model is achieved. 

For example, the mechanical properties of the particle are described by the classical Newton's 

second law, if its speed is much less than the light’s speed. 

It should be noted that represented in the form of inequalities ,ba   the simulation 

interval is quite abstract and “opaque”. To overcome this limitation one should calculate 

relative error , which arises when we neglect the quantity of а  in the expression describing 

the phenomenon under consideration. It is sufficient to specify the range of values а  for 

which the error does not exceed the value dictated by the required accuracy for finding the 

investigated characteristic (as a rule, %5max  ). This process may be called a quantitative 

estimation of the physical idealization applicability limits. 

 

Calculations for a thin optical lens model 

 

As an example let us consider one of the most general idealizations in geometrical optics – a 

thin optical lens model. The latter refers to the transparent for this interval of electromagnetic 

waves region of space bounded by two refracting surfaces having a common axle or two 

mutually perpendicular planes of symmetry, and for which takes place the following 

condition: 

 2,1Rt   ( 02,1 R ). (1) 
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Here 0t  – "axis" lens thickness that is the distance between the poles of its surfaces; 2,1R  is 

the radius of the lens curvature measured along its symmetry axis. Further we will specify 

this criterion and investigate it on quantitative level.  

In the paraxial approximation, with consideration of finite value t, the generalized 

formula of lens has following form: 
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where f , d  respectively are the distances from the second and the first principal planes to 

the image and the luminous point A  (Fig. 1). The focal lengths are also measured from the 

principal planes. 

The right-hand side of expression (2) determines the effective optical power D  of a 

thick lens and is called the Gullstrand’s equation (thick lens formula or Lensmaker's 

equation) [1]. This equation is valid for the case when both sides of the lens are situated in 

the same environment (practically important exceptions from this case are the human eye and 

oil-immersion microscope lens). In this case 0n  is the refractive index of the lens material 

with respect to the environment in which it is located. 

The coordinates of the poles relative to the lens of principal planes can be calculated 

with the formulas [2]:  tnRRntRx )1()( 1211  ,  tnRRntRx )1()( 1222  . Then the 

distance between the principal planes is 
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Therefore, the relation (1) will be the thin lens formula under the conditions [3]: 

1)( 0  DDDD  (relative error arising by neglecting the thickness of the lens to 

calculate the optical power), 1 Dr   (the ratio of   to the focal length), where 

)0(0  tDD . With regard to (2), (3), these conditions take the form:  

Fig. 1. Image formation of the luminous point A in the thick lens 
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For each value of n  the system (4) allocates on the plane ),( 21 tRtR  region for 

which the thin lens approximation is valid. On Fig. 2 (а, b) the results of numerical 

calculations of the level curves for 6,1n  (the average value of the refractive index of glass) 

and 75,0n  (air lens in water), along which the values D  and r  are equal to 5%, are 

presented. Regions that correspond to large values of these quantities are shown in gray. 

 

Analysis of these diagrams shows that the limits of a thin lens applicability model are 

determined, above all, by its geometric type. Thus, when the curvature radii of the lens have 

different signs (biconvex and biconcave lenses), the latter may be considered as thin if each 

of modules is more than 2-4 times greater than its thickness (asymptotes of curves in these 

cases are the lines nrtnR 2

2,1 )1(  ). Іf )sgn()sgn( 21 RR   (positive and negative 

meniscus), one of the radii should satisfy the condition: 
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(for the values n , r , described above, tR )42(2,1  ), and another – the condition: 

 

Fig. 2. The correctness (white) and incorrectness (gray) regions of thin lens approximation for 

%5 rD . а) 6,1n ; b) 75,0n  

а) b) 
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Fig. 3. The lines on the plane ),( 21 tRtR , along which the effective optical power is zero. 1) 

9,1n ; 1) 6,1n ;1) 75,0n ;1) 6,0n  
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(for the values n , r , D , described above, tR )108(1,2  ). At the same time 
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(for the values n , r , D , described above, tRR )86(12  ).  

More stringent requirements for the lenses in the form of a meniscus are due to the 

fact that with 21 RR   their optical power will strong depend on the thickness. Thus, when 

0t  they will appear as ordinary blanket lenses with 0D .  

Gullstrand’s equation also allows for finding the relationship between 2,1R  and t , in 

which the image becomes a telescopic one ( 0D ; in this case the lens becomes an afocal 

system [4]). From the expression (2) follows that this equation has the form of line 

nntRtR )1(21   on the plane ),( 21 tRtR . Fig. 3 shows a set of such lines, constructed 

for several values of the refraction index. It’s seen that for 1n  ( 1n ) the effective optical 

power can not vanish for biconcave (biconvex) lenses for arbitrary pairs of the curvature radii 

values. The lenses in the form of the meniscus have no such limits. 
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It should be noted that the sign of the effective optical power can characterize the 

optical properties of the lens (converging, diverging) only when it is thin. In this case D  is 

simply called the optical power. With 0t  sign of D  may not always indicate the type of 

focal point of the lens (real or imaginary). This statement is easily illustrated by the biconvex 

lens with 1n  [5]. When the thickness of the lens is small, its focal point is situated on the 

right of the second pole (Fig. 4a). With )1(1  nnRtt x  refracted by the first surface rays 

intersect in the second pole (Fig. 4b). If xtt   the output beam becomes divergent (Fig. 4c),  

while D  remains positive. Finally, with )1()( 210  nRRntt  the output beam is 

converted into parallel (Fig. 4 d) and the effective optical power becomes equal to zero. 

Conclusions 

The applicability limits of a thin lens model are determined not only by the ratio between the 

thickness of the lens and the curvature radii modules, but above all by its geometric type. In 

the case of biconvex and biconcave lenses the criteria for applicability of the model are 

defined by the condition (5), while for the meniscus – by conditions (5-7). A significant 

thickness of the lens can lead to the appearing of a telescoping effect, as well as to 

discrepancy between the lens effective power sign and the lens optical type. 

References 

Ananiev, Y. (1990). Physical encyclopedia, vol.2, Moscow: Soviet encyclopedia.  

Born M. and Wolf E. (1980). Principles of Optics. Pergamon Press: Oxford. 

Mahajan, V. (2001). Optical imaging and Aberrations, Part I: Ray Geometrical optics, SPIE 

Press, Bellingham, Washington (second printing). 

Mouroulis, P. and Macdonald, J. (1997). Geometrical Optics and Optical Design. Oxford 

University Press: New York/Oxford. 
Tudorovskii, A. (1948). Theory of optical devices, 2

nd
 ed. M.-L. Part 1 (in Russian). 

Fig. 4. Position of the back focal point in a thick biconvex lens with different values of its axial 

thickness. а) xtt  ; b) xtt  ; c) 0ttt x  ; d) 0tt   

а) b) c) 

d) 


