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Abstract 

I describe a method of evaluating the integral of 2
1
r

with respect to r that uses only algebra and the concept of area 

underneath a curve, and which does not formally employ any calculus. This is useful for algebra-based introductory 
physics classes (where the use of calculus is forbidden) to derive the work done by the force of one point charge or 

mass on another. I extend the method to evaluate any integral of the form ∫ drrn  for any integer 1−≠n . 
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Introduction 
 
In the United States, a large proportion [approximately 40% in 2008 according to Mulvey and 
Nicholson (2011)] of university students who enroll in introductory physics courses take the 
algebra-based version, in which formal calculus is not employed. The popularity of the algebra-
based courses is in part due to typical medical school requirements and the Medical College 
Admissions Tests syllabus (American Association of Medical Colleges (2008)), for which 
algebra-based version of the introductory courses satisfies the physics requirement. 

In algebra-based introductory physics courses, the result for the work done by an inverse 
square force, such as the Coulomb or gravitational force between point particles, is usually given 
without proof, since the rigorous derivation of the result requires knowledge of integral calculus. 
Here, I describe a way that the work can obtained without any formal calculus, based on work 
being the area under the force vs. displacement curve. 
 
The derivation for area under a 21 r curve 
 
The concept of work in algebra-based introductory physics courses is typically introduced for the 
special case of a constant force, in which case the work done is W = Fd, where F is the 
component of the constant force in the direction of the displacement and d is the distance 
travelled. This corresponds to the area enclosed in the rectangle created by the constant force vs. 
displacement curve. The work done by a variable force is later explained as the area underneath 
the force vs. displacement curve, typically with the aid of a figure such as shown in Fig. 1, where 
the area underneath the curve has been divided into many small rectangular blocks. In the case of 
a Hooke’s law force which is proportional to the displacement, F = kx, the area underneath the 
curve between xi and xf  is )( 22

2
1

if xxkW −= . This can be obtained without calculus because it is 
the area of a right-angled trapezoid, which is the sum of the area of a rectangle and a right-angled 
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triangle. However, in the case work done by forces that vary as the inverse-square of the 
distance, 2rkF = , the work done in moving a particle from ri to rf,  
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is usually simply stated as a result whose derivation requires knowledge of mathematics that is 
beyond the scope of a non-calculus based course. Consequently, students often do not remember 
this result.   In my experience, when students are asked in tests for the work done by a force 

2rkF =  in moving an object from a distance R to R+d, instead of the correct answer 

⎟
⎠

⎞
⎜
⎝

⎛
+

−=
dRR

kW 11 , a significant fraction of the students recall the constant force result and 

answer W = Fd, where they typically use the initial force 2Rk for F.  This error is less common 
when a similar question is asked for a Hooke's law force, in my opinion, because students are 
explicitly shown that the work done for a spring is that of the area underneath the curve, whereas 
for the inverse-square forces, they are simply told the result as a fact.  If this is the case, the 
solution is to derive the result for them in the inverse-square force case.   But how do we do this 
without the use of integral calculus, and in a simple and straightforward way? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Area underneath a curve F from ri to rf , divided into N subintervals, 
where the limits of sub-intervals are ri = r0, r1, r2, … , rN-1, rN = rf . The area Aj 

under the curve in the sub-interval from rj and rj-1 is equal to (rj – rj-1) <F>, where 
<F> is the average of the function F over that interval. 
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The integral ∫
f

i

r

r r
dr 2
1 is the area underneath the 2

1
r

 curve from ri to rf . Divide the interval 

ri to rf  into N equally spaced sub-intervals, where N is a large number and the j-th sub-interval is 
from rj-1 to rj (with r0 = ri and rN = rf ), as shown in Fig. 1. The area under the curve in the j-th 
sub-interval from rj-1 to rj is 
 

 21
1)(
r

rrA jjj −−=       (2) 

where 2
1
r

 is the average of 2
1
r

over the sub-interval. Since the number of intervals N is large, 

the difference between rj-1 and rj is very small and we can substitute any r from the interval rj-1 

and rj into the r in 2
1
r

and obtain an accurate result. Let us choose to substitute (with the 

benefit of hindsight!) the geometric mean of the lower and upper limits of the sub-interval, 
2/1

1)( −→ jj rrr .  Thus, 
1

2
11
−

→
jj rrr

, which gives 
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The area underneath the 2
1
r

 curve from ri to rf is the sum of the areas underneath the 

curves in the sub-intervals r0 (= ri) to r1, r1 to r2, r2 to r3, and so on until rN-1 to rN (= rf ), which 
gives 
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where the second-to-last equality results from second term in the first parenthesis cancelling the 
first term in the second parenthesis, the second term in the second parenthesis cancelling the first 
term in the third parenthesis, and so on. 
 
Generalization to ∫ drrn  for integers 1≠n  
 
The above result can be generalized to integrate rn for any integer n, except n = −1.  As in the 

case of integrating 2
1
r

, one divides the integration interval from ri to rf into sub-intervals given 
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by r0 = ri; r1; r2; · · · ; rN-1; rN = rf , where N is a large number, so that the sub-intervals are very 

small. I deal with the cases 1
1
+nr

and rn for 1≥n separately. (The r0 case is trivial because r0 = 1.) 

 

Evaluating dr
rn∫ +1
1 for integers 1≥n  

The area under the curve 1
1
+nr

in the sub-interval from rj-1 to rj is 

 11
1)( +−−= njjj r

rrA       (5) 

where 1/1 +nr is the average over the interval.  Because the sub-interval is so small, we can 
replace 1/rn+1 with any function of rj-1 and rj, which gives 1/rn+1 when both rj-1 and rj are replaced 
by r.  Again, with the benefit of hindsight, we choose 
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(Note that there are n terms in the numerator on the right hand side of Eq. (6), so when rj and rj-1 
are replaced by r, the numerator becomes nrn-1.)  With this choice,  
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The numerator in Eq. (7) “telescopes”; i.e.,  
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and Eq. (7) becomes  
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Therefore, 
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Evaluating drrn∫  for integers 1≥n  
 
The area under the curve nr in the sub-interval from rj-1 to rj is n

jjj rrrA )( 1−−= .   With the 
benefit of hindsight, we replace 
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(Note that there are n+1 terms in the parentheses of the above equation, which gives (n+1)rn 
when rj and rj-1 are replaced by r.)  Using the “telescoping” result, Eq. (8), gives 
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and therefore  
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Conclusion 
 
In conclusion, for the special but important case of the work of an inverse-square force F = k/r2, 
one can demonstrate that the work done by the force in moving a particle from ri to rf is 
( )

fi rrk 11 − without the formal use of integral calculus. Many students in non-calculus-based 

introductory physics classes have a fixation with the constant force equation for work, W = Fd, 
and will use it even when the force is not constant. Therefore, an explicit demonstration of the 
result for the inverse-square force case should be helpful in preventing these students from 
making that common mistake. The method described is also extended to evaluate the integral of 
rn with respect to r for any integer 1≠n . 
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