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Abstract 
When the external torque acting on a rotating object is zero, its angular momentum is conserved. For a 
rotating object the angular momentum can be expressed as the product of rotational inertia and 
angular velocity. This gives an equation that is useful in problem solving. However, when using this 
equation there is no clue as to what is happening to the energy of the system. When introduced to the 
topic of conservation of angular momentum, students ask questions about the conservation of energy 
and kinetic energy. However, there is neither a textbook nor article in physics teaching journals that 
would address the issue of energy for cases where the angular momentum is conserved. The answers 
to questions of students are given here. 
Key Words: Rotational dynamics, angular momentum, conservation of angular momentum, 
conservation of energy 
PACS Numbers: 46.02C, 46.03B, 46.05B 

 
 
 
 
Conservation of angular momentum  
 
The equation of motion for a rotating object, or a body can be written as, 

 

 
dt

d
ext

L
T  , (1) 

 
where   Text  is the external torque,   L is angular momentum and t  stands for time. 

Equation (1) shows that if the external torque   Text  is zero then angular momentum 

  L is constant. If a point object rotates e.g. about the z-axis, equation (1) gives  
 

  2mrILconst z  , (2) 

 
where Lz  is the component of the angular momentum along the rotation axis, I  is 

the rotational inertia for the same axis, r  is the object distance from the same axis 
and m  is the object’s mass. Eq. (2) implies that if eg. I  increases then   decreases, 

and conversely. Denoting the initial values of rotational inertia and angular velocity 
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as I0  and0 , respectively, the law of conservation of angular momentum can be 

written as  
 

  II 00 . (3) 

 
Let us turn to a simple example given by Haliday and Resnick (1981). In this 

example a small object of mass m  is attached to a light string, which passes through 
a hollow tube. One hand and the string hold the tube by the other. The object is set 

into rotation in a circle of radius r1  with speedv1 . The string is then pulled down 

which shortens the radius of the object's path tor2 . The task is to find the new speed 

v2  and the new angular speed  2  of the object in terms of the initial values v1  and 
1  and the two radii. 

Equation (3) requires that the initial angular momentum equals the final 
angular momentum, whence  
 

 2

2

21

2

1  mrmr  . (4) 

 

Given r1 , 1  and r2  we can determine  2  from equation (4), find 2v  from 

222 rv  , and the problem is solved. While this is quite clear someone may 

interested to know that what is happening with energy. The first question here is 
this: Is kinetic energy conserved? In the example in Fig. 1 and all the other similar 

problems, the rotational kinetic energy is not conserved. If 21 rr  , then 
2

2

2

1 rr   and 

equation (4) imply the inequality 21   . This inequality multiplied by equation (4) 

gives  
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1
 mrIImr  . (5) 

 
Inequality (5) confirms that the (rotational) kinetic energy is not conserved. 

The second question to be answered is whether the overall energy is conserved. The 
answer is simple - it has to be. It is obvious that the amount of work supplied to the 
system is strongly dependent on the friction. Is this the reason that the energy 
changes are intractable? Or, is there other reason that would prevent us to see the 
energy changes in the system in Fig.1? These questions are answered in the 
following section. 
 
 
Evaluation of the work done on the system  
 
When the string in Fig. 1 is pulled down by dr  the kinetic energy of the rotating 
object increases by, 
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2

1

2

1
 Idmrd . (6) 

 
At the same time pulling the string down means that a work was done on the 

system. By definition this work is  
 

 FdrdW  . (7) 
 

The negative sign in the equation above appears because the radius decreases 
and thus its differential is negative. The force in the equation above is the sum of the 

two forces, namely 1F  and 2F . Force 2F  represents the force of friction and 1F  is the 

tension in the string, i.e. the centripetal force. If there is no friction then the work 

drF1  has to be equal to the increase in the kinetic energy, which can be written as   

 

 drFmrd 1

22

2

1









 . (8) 

 

When the friction between the pipe and the string is not zero then 2F  is not 

zero and the expression drF2  represents work done by friction so it is possible to 

write 

 
 drFdW f 2 ,

 (9) 

 

where the symbol Wf  stands for the work done by 2F . 2F . In example in Fig. 1 the 

work done by friction forces implies an increase in the thermal energy of the system. 
The equation above is important but it does not need to be considered further 

on as we are not interested in the amount of the thermal energy that is being 

generated. It is not possible that 2F  also contributes to the increase of the kinetic 

energy of the rotating body. When friction acts, the product on the right-hand side of 
(9) is always converted to thermal energy. 

As already mentioned the force 1F  in (8) has the magnitude of the centripetal 

force. Therefore we write 
 

 rmF 2

1  . (10) 

 
Now (10) is used in (8). The left side of (8) is then simplified using identity  
 
      drrdrrd 222221  ,  (11) 

 
and equation (8) becomes 
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 dr rd  dr. (12) 
 
Equation (12) can be rearranged as  
 

 
d


 2

dr

r
. (13) 

 
Let us recall now that initially r  r1,   1 , and that upon the completion of 

the string movement r  r2  and   2 . Integrating equation (13) from the initial 

state to the final state using formula  
 

   r
r

dr
ln ,   r  0 (14) 

 
and then applying rules for manipulating logarithmic functions we get   
 

 2

1

2

2

2

1

r

r





. (15) 

 
Equation (15) is equivalent to equation (4). This means that equation (4) can be 

derived not just by applying   Text  0  in (1), but also by considering the work done 

on the system and the subsequent energy increase. The procedure starting with (6) 
shows that while the kinetic energy of the object is not conserved we can easily 
describe energy changes. Such approach shows the problem in a dynamic process 
where radius, angular velocity and linear velocity are all changing. When the force 
pulls the string in Fig. 1 the mass moves towards the hollow tube. The angular 
velocity, radius and the kinetic energy are all being changed. To see that the 
rotational kinetic energy is increasing is obvious from equation (8). The change in   

as a response to the change in r  is seen in equation (13). The latter equation can be 
read like this: The relative increase in   equals the double of the corresponding 
relative decrease in r . Finally, the integration of (13) gives (15), and (15) assures that 
while everything varied in the process, the angular momentum remained constant 
as required by (1), because the external torque was zero.  
 
Final Notes and Conclusions 
 
Writing this article was inspired by questions of students. Occasionally some of 
them think that in examples like the one in Fig.1 we should use the conservation of 
energy. It is the lecturer, who upon hearing such statement tends to rectify it by 
saying: "You cannot do it in that way because the kinetic energy is not conserved." 
This leaves students wandering that what is actually happening to the conservation 
of energy because the overall energy has to be conserved. The important moment 
here is that the work done on the rotating object can be evaluated and changes in the 
energy of the system can be understood. 
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The considerations presented in previous sections give a deeper insight into 
the mechanics of rotating bodies at conditions when the external torque is zero. They 
show how rotational energy, work and angular momentum are related. Finally, the 
ideas and derivation given here help to appreciate the simplicity and elegance that is 
contained in equations expressing the conservation of the angular momentum. The 
reader who is interested to review energy changes in a different example may read 
the Appendix A. 

Conservation of angular momentum as a topic is well mastered in university 
textbooks of physics and tutorials see e.g. (Halliday and Resnick, 1981; Knight, 2004; 
McDermott et al., 2002). Publications reporting on teaching angular momentum and 
its conservation show new approaches and methodologies, see e.g. (McDermott et 
al., 2002; Close and Heron, 2011; Lock, 1989; Johns, 1998) and new original 
experiments, see e.g. (Johns, 1998; Johns, 2003; Williamson et al., 2000; Mak and 
Wong, 1989; Klostergaard, 1976; Rockefeller, 1975). However, while quality 
contributions that relate to teaching of angular momentum and its conservation can 
be found in physics teaching journals, one aspect of this topic appears to be 
neglected. It is the energy consideration for cases where the angular momentum is 
conserved. So besides answering questions of students the purpose of this article is 
to initiate such discussion. 
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Appendix   
 
In this paper, we consider a case where the rotational inertia has two parts. One part 
of the inertia is constant and the other varies. This problem can be illustrated with 
another example taken from reference [1]. A student sits on a stool that is free to 
rotate about a vertical axis. The student holds arms extended horizontally with a 
dumbbell in each hand. Mass of the dumbbells is m . The instructor starts rotating 

student with an angular speed1 . Assume that friction is negligible and exerts no 

torque about the vertical axis of rotation. Assume also that the rotational inertia of 
the student I  remains constant as he pulls his hands to his sides and that the change 
in total rotational inertia is due only to pulling the dumbbells in. The original 
distance of the dumbbells from the axis of rotation is denoted as r1  and the final 

asr2 . The task is to find the final angular speed of the student, or better to say of the 

whole system. 
The conservation of energy offers equation  

 

 rdrmmrdId 2222

2

1

2

1
 

















. (16) 

 

As in the previous example the rm 2  on the right-hand side of equation (16) 
is the centripetal force, in this case exerted by the student on the dumbbells. The left-
hand side of equation (16) includes the change in the kinetic energy of both the 
student and the dumbbells. 

The differentials in the left side of this equation can be expressed in terms of d  and 
dr  while I  remains constant. Equation (16) then simplifies and has form 
 

 rdrmdmrdI 22 2   . (17) 
 
This equation allows separation of the two variables, namely   andr . 
 

 
d


 2

rdr

I m  r2
. (18) 

 
Now the task is to integrate (18). For this purpose it is advantageous to use 

substitution  
 

  zr 2
,        2rdr dz  (19) 

 
and write down 
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  


2

1
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1

z

z
zmI

dzd





 . (20) 

 
where  
 

  
2

11 rz  ,       
2

22 rz  . (21, 22) 

  
The first integral in (20) is evaluated using formula (14). The second integral is 
evaluated using formula 
  

   


zmI
zmI

dz
ln ,   r  0. (23) 

 
In this way we get relation 
 

  2

2

2

1

1

2

rmI

rmI









,       (24) 

 
this can be rewritten as 
 
      2

2

21

2

1  mrImrI  .       (25) 

 
Equation (25) expresses the conservation of angular momentum. As stated in the 
example at the beginning of this section quantities I ,m ,r1 ,r2 , and 1  are known, 

hence (25) can be used for calculation of  2 . 
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Fig. 1. An object attached to a string is set into motion in a horizontal plane. The string that is 

passing down through a hollow tube is pulled down to decrease the radius of rotation
 


