Physics in One Dimension

  • Erminald Bertel University of Innsbruck

Abstract

Due to progress in nanotechnology high-quality quantum wires can nowadays be fabricated. The behavior of particles in one dimension differs significantly from that in three-dimensional (3D) systems, yet the physics of such low-dimensional systems is generally not very well represented in standard undergraduate or graduate curricula. For instance, the Fermi liquid paradigm, working well for electrons in 3D systems, breaks down in 1D and has to be replaced by the Tomonaga-Luttinger liquid (TLL) description. However, most of the introductory papers on the TLL restrict themselves to a summary of results to be compared with experiments, while review papers are often fraught with technical details only accessible to the theorist. The present paper provides an elementary discussion of some phenomena distinguishing quantum wires and quasi-one-dimensional systems from their 3D counterparts targeting experimentalists and graduate students. It aims to convey the basic ideas of TLL theory and to relate it to alternative phases, such as charge and spin density waves. The important role of fluctuations in quasi-1D systems is pointed out and the connection is made to the problem of high-Tc superconductivity. The discussion is kept on a level, which should be accessible with a basic knowledge of quantum mechanics.

References

Amann, P. , Cordin, M., Braun, Ch., Lechner, B.A.J., Menzel, A., Bertel, E., Franchini, C., Zucca, R., Redinger, J., Baranov, M., & Diehl, S. (2010). Electronically driven phase transitions in a quasi-one-dimensional adsorbate system. European Physics Journal B, 75, 15-22.
Aruga, T. (2006). Surface Peierls transition on Cu(001) covered with heavier p-block metals. Surface Science Reports, 61, 283-302.
Ashcroft, N.W., & Mermin, N.D. (1987). Solid State Physics. Philadelphia, PA: Holt, Rinehart and Winston.
Basov, D. N., & Chubukov, A.V. (2011). Manifesto for a higher Tc. Nature Physics, 7, 272-276.
Bertel, E., & Menzel, A. (2010). Nanostructured surfaces: Dimensionally constrained electrons and correlation. In A.V. Narlikar and Y.Y. Fu (Eds.), The Oxford Handbook of Nanoscience and Technology (Vol. 1, pp. 308-354). Oxford: Oxford University Press.
Blumenstein, C., Schafer, J., Mietke, S., Meyer, S., Dollinger, A., Lochner, M., Cui, X. Y., Patthey, L., Matzdorf, R., & Claessen, R. (2011). Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid. Nature Physics, 7, 776-780.
Bourbonnais, C. J. (2000). Journal de Physique IV France, 10, 81-90.
Canfield, P.C. (2011). Still alluring and hard to predict at 100. Nature Materials, 10, 259-261.
Chu, J.-H., Analytis, J.G., De Greve, K., McMahon, P.L., Islam, Z., Yamamoto, Y., & Fisher, I.R.(2010). In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor. Science, 329, 824-826.
Cloizeaux, J., & Pearson, J. J. (1962). Spin-Wave Spectrum of the Antiferromagnetic Linear Chain. Physical Review, 128, 2131-2135.
Dusza, A., Lucarelli, A., Pfuner, F., Chu, J.-H., Fisher, I.R., & Degiorgi, L. (2011). Anisotropic charge dynamics in detwinned Ba(Fe1-xCox )2As2. EPL (Europhysics Letters), 93, 37002.
Giamarchi, T. (2004). Quantum Physics in One Dimension. Oxford: Oxford University Press.
Grüner, G. (1994). Density waves in solids. Cambridge, MA: Perseus Publishing.
Hasegawa, S. (2010). Quasi-one-dimensional metals on semiconductor surfaces with defects. Journal of Physics: Condensed Matter, 22, 084026.
Jérome, D., & Schulz, H. J. (2002). Organic conductors and superconductors. Advances in Physics, 51, 293-479.
Johannes, M. D., & Mazin, I. I. (2008). Fermi surface nesting and the origin of charge density waves in metals. Physical Review B, 77, 165135.
Keffer, F., Kaplan, H., & Yafet, Y. (1953). Spin Waves in Ferromagnetic and Antiferromagnetic Materials. American Journal of Physics, 21, 250-257.
Kim, C. , Shen, Z. X., Motoyama, N., Eisaki, H. , Uchida, S. , Tohyama, T., & Maekawa, S. (1997). Separation of spin and charge excitations in one-dimensional SrCuO2. Physical Review B, 56, 15589-15595.
Kim, B. J., Koh, H., Rotenberg, E., Oh, S. J., Eisaki, H., Motoyama, N., Uchida, S., Tohyama, T., Maekawa, S., Shen, Z. X., & Kim, C. (2006). Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2. Nature Physics, 2, 397-401.
Kittel, Ch. (2005). Introduction to Solid State Physics, New York, NY: Wiley.
Maekawa, S., & Tohyama, T. (2001). Charge and spin in low-dimensional cuprates. Reports on Progress in Physics, 64, 383-428.
Mazin, I. I., Singh, D. J., Johannes, M. D., & Du, M. H. (2008). Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx. Physical Review Letters, 101, 057003.
Monthoux, P., Pines, D., & Lonzarich, G.G. (2007). Superconductivity without Phonons. Nature 450, 1177-1183.
Norman, M.R. (2011). The Challenge of Unconventional Superconductivity. Science, 332, 196-200.
Nuri, O. (2008). Atomic chains on surfaces. Journal of Physics: Condensed Matter, 20, 393001.
Rice, T. M., & Scott, G. K. (1975). New Mechanism for a Charge-Density-Wave Instability. Physical Review Letters, 35, 120.
Sachdev, S. (2000). Quantum Criticality: Competing Ground States in Low Dimensions. Science, 288, 475-480.
Sachdev, S. (1999). Quantum Phase Transitions. Cambridge: Cambridge University Press.
Schönhammer, K. (2002). The Luttinger liquid concept for interacting electrons in one dimension. Journal of Physics: Condensed Matter, 14, 12783-12791.
Sólyom, J. (1979). The Fermi gas model of one-dimensional conductors. Advances in Physics, 28, 201-303.
Stolze, J. (2007). Thermodynamik und Statistik. Retrieved from http://t1.physik.tu-dortmund.de/stolze/teaching/TundS/thunds0607.pdf .
Tosatti, E. (1975). Electronic superstructures of semiconductor surfaces and of layered transition-metal compounds. Advances in Solid State Physics, 15, 113-147.
Voit, J. (2001). Spectral properties of nearly free and strongly correlated one-dimensional electrons. Journal of Electron Spectroscopy and Related Phenomena, 117–118, 469-480.
Vojta, M. (2003). Quantum phase transitions. Reports on Progress in Physics, 66, 2069-2110.
Whangbo, M. -H., Canadell, E. , Foury, P., & Pouget, J. -P. (1991). Hidden Fermi Surface Nesting and Charge Density Wave Instability in Low-Dimensional Metals. Science, 252, 96-98.
J. Zaanen, J. (2006). Quantum stripe search. Nature, 440, 1118-1119.
Published
2017-02-28
How to Cite
BERTEL, Erminald. Physics in One Dimension. European Journal of Physics Education, [S.l.], v. 4, n. 1, p. 58-77, feb. 2017. ISSN 1309-7202. Available at: <https://eu-journal.org/index.php/EJPE/article/view/83>. Date accessed: 19 apr. 2024.
Section
Classroom Physics