Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom using Mathematica

  • César R. Acosta Universidad Autónoma de Yucatán

Abstract

Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix. The Mathematica software was used to program the matrix diagonalization process from the overlap and Hamiltonian core matrices and to make the recursion loop of the density matrix. Finally we obtained a value for the ground state energy of helium.

References

Bransden, B. H., & Joachain, C. J. (2003). Physics of atoms and molecules. Pearson Education India.
Brenner, S. C., & Scott, R. (2008). The mathematical theory of finite element methods (Vol. 15). Springer.
Bukowski, R., Sadlej, J., Jeziorski, B., Jankowski, P., Szalewicz, K., Kucharski, S. A., ... & Rice, B. M. (1999). Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory. The Journal of chemical physics, 110(8), 3785-3803.
Carey, G. F., & Oden, J. T. (1981). Finite elements. 1. An introduction. Prentice-Hall.
Hartree, D. R. (1957). The calculation of atomic structures (pp. 25-25). New York: J. Wiley.
Levine, I. N. (2000). Quantum chemistry (Vol. 5). Upper Saddle River, NJ: Prentice Hall.
Reddy, J. N. (2004). Nonlinear finite element analysis. Oxford University Press, New York.
Szabo, A. (1996). Modern Quantum Chemistry: Introduction To Advanced Electronic Structure Theory Author: Attila Szabo, Neil S. Ostlund, Publ.
Thomée, V. (1990). Finite difference methods for linear parabolic equations. Handbook of numerical analysis., 1, 5.
Published
2017-02-28
How to Cite
ACOSTA, César R.. Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom using Mathematica. European Journal of Physics Education, [S.l.], v. 5, n. 1, p. 1-14, feb. 2017. ISSN 1309-7202. Available at: <http://eu-journal.org/index.php/EJPE/article/view/58>. Date accessed: 17 sep. 2019. doi: https://doi.org/10.20308/ejpe.v5i1.58.
Section
Classroom Physics