The Effect of Teaching Practices with Real Life Content in “Heat and Temperature” and “Movement and Force” Learning Areas

  • Muhammed Said Akar M. Said Akar
  • Sema Altun Yalçın
  • Paşa Yalçın
  • Meryem Özturan Sağırlı

Abstract

In this study, it is aimed to investigate the effect of the Context-based Instruction Applications, prepared using verbal problems with real-life content and scenarios, on the level of pre-service teachers' learning areas of "heat and temperature" and "movement and force" and their level of creating contexts in daily life. The effect of the Context-based Instruction Applications the pre-service science teachers’ level of associating science subjects and concepts with daily life was investigated. The research, which was conducted based on the single group pre-test and post-test experimental pattern, was carried out with 30 pre-service science teachers and data were collected with open-ended questionnaires prepared related to the use of learning areas in real life. At the end of the research, an increase was determined in the pre-service teachers’ levels of associating the learning fields with daily life, that is, creating contexts between concepts and daily life. In addition, after the applications, it was observed that the pre-service teachers made associations more detailed and with different real-world application areas in real life.

References

Acemioğlu, R., & Doğan, Y. (2019). Investigating preservice science teachers misconceptions on heat and temperature. Journal of Muallim Rıfat Faculty of Education, 1(1), 54-67.
Akgün, A., Çinici, A., Yıldırım, N., & Köprübaşı, M. (2015). Investigation of how eight grade students associate scientific concepts with the ones they encounter in their daily lives. Journal of Theory & Practice in Education (JTPE), 11(4).
Areljung, S., & Sundberg, B. (2018). Potential for multi-dimensional teaching for ‘emergent scientific literacy’in pre-school practice. Journal of Emergent Science, 15, 20-27.
Atasoy, Ş., & Akdeniz, A. R. (2005). Newton’un hareket kanunları ile ilgili öğretmen adaylarının sahip oldukları kavram yanılgıları. XIV. Ulusal Eğitim Bilimleri Kongresinde sunulan bildiri. Pamukkale Üniversitesi Eğitim Fakültesi. Denizli.
Atasoy, Ş., & Akdeniz, A. R. (2007). Newton’un hareket kanunları konusunda kavram yanılgılarını belirlemeye yönelik bir testin geliştirilmesi ve uygulanması. Journal of Turkish Science Education, 4(1), 45-59.
Aydoğan, S., Güneş, B., & Gülçiçek, Ç. (2003). Isı ve sıcaklık konusunda kavram yanılgıları. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 23(2).
Ayvacı, H. Ş. (2010). Views of physics teachers about context based approach. Dicle University Journal of Ziya Gökalp Faculty of Education, 15, 42-51.
Balkan-Kıyıcı, F., & Aydoğdu, M. (2011). Determination of pre-service science teachers’ levels of relating the scientific knowledge to their daily lives. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 5(1), 43-61.
Bilgin, A. K., Yürükel, F. N. D., & Yiğit, N. (2017). The effect of a developed REACT strategy on the conceptual understanding of students: "Particulate nature of matter". Journal of Turkish Science Education, 14(2), 65-81.
Bogdan, R. C. & Biklen, S. K. (2003). Qualitative Research for Education. New York: Fourth Edition. A and B Publisher.
Büyüköztürk, Ş. (2011). Deneysel desenler: öntest-sontest kontrol grubu, desen ve veri analizi. Ankara: Pegem Akademi.
Callanan, M., Luce, M., Triona, L., Rigney, J., Siegel, D., & Jipson, J. (2013). What counts as science in everyday and family interactions?. In LOST opportunities (pp. 29-48). Springer, Dordrecht.
Çepni, S., Ülger, B. B., & Ormancı, Ü. (2017). Pre-service science teachers' views towards the process of associating science concepts with everyday life. Journal of Turkish Science Education, 14(4), 1-15.
Chi, M. T. H., Slotta, J. D. & Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
Coştu, B., & Ayas, A. (2005). Evaporation in different liquids: Secondary students’ conceptions. Research in Science & Technological Education, 23(1), 75-97.
De Jong, O. (2008). Context-based chemical education: how to improve it?. Chemical Education International, 8(1), 1-7.
De Putter-Smits, L. G. A., Taconis, R., & Jochems, W. M. G. (2013). Mapping context-based learning environments: The construction of an instrument. Learning Environments Research, 16(3), 437-462.
De Putter-Smits, L. G., Taconis, R., Jochems, W., & Van Driel, J. (2012). An analysis of teaching competence in science teachers involved in the design of context-based curriculum materials. International Journal of Science Education, 34(5), 701-721.
Dede Er, T., Şen, Ö. F., Sarı, U., & Çelik, H. (2013). The level of association for primary school students between science and technology course and daily life. Journal of Research in Education and Teaching, 2(2), 209-216.
Demircioğlu, H., Bektaş, F., & Demircioğlu, G. (2018). Sıvıların özellikleri konusunun bağlam temelli yaklaşımla öğretiminin öğrenci başarısı üzerindeki etkisi. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 33, 13-25.
Demircioğlu, H., Dinç, M., & Çalık, M. (2013). The effect of storylines embedded within context-based learning approach on grade 6 students'understanding of'physical and chemical change'concepts. Journal of Baltic Science Education, 12(5).
Demircioğlu, I. H. (2008). Using historical stories to teach tolerance: The experiences of Turkish eighth-grade students. The Social Studies, 99(3), 105-110.
Doğan, S., Kırvak, E., & Baran, Ş. (2004). The levels of secondary school students making connection between daily life and the knowledge gained during biology lectures. Journal of Education Faculty, 6(1), 57-63.
Erdemir, N., & Bakırcı, H. (2009). The change and the development of attitudes of science teacher candidates towards branches. Kastamonu Education Journal, 17(1), 161-170.
Eryılmaz, S., & Kaya, Ö. (2011). Students'association levels of light knowledge acquired in science and technology courses with daily life. Western Anatolia Journal of Educational Science, Special Issue, 391-396.
Finkelstein, N. (2005). Learning physics in context: A study of student learning about electricity and magnetism. International Journal of Science Education, 27(10), 1187-1209.
Fragkiadaki, G., & Ravanis, K. (2016). Genetic research methodology meets early childhood science education research: A Cultural-Historical study of child’s scientific thinking development.
Frederik, I., Der Valk, T. V., Leite, L., & Thorén, I. (1999). Pre-service physics teachers and conceptual difficulties on temperature and heat. European Journal of Teacher Education, 22(1), 61-74.
Gilbert, J. K., Bulte, A. M., & Pilot, A. (2011). Concept development and transfer in context‐based science education. International Journal of Science Education, 33(6), 817-837.
Glynn, S., & Koballa, T. R. (2005). The contextual teaching and learning instructional approach. Exemplary science: Best Practices in Professional Development, 75-84.
Göçmençelebi, Ş. İ. & Özkan, M. (2011). Bilimsel yayınları takip eden ve teknoloji kullanan ilköğretim öğrencilerinin fen dersinde öğrendiklerini günlük yaşamla ilişkilendirme düzeyleri bakımından karşılaştırılması. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 24(1), 287-296.
Gönen, S., & Akgün, A. (2005). The investigation of applicability of worksheet was developed about relationship between heat and temperature concepts. Electronic Journal of Social Sciences, 3(11), 92-106.
Güneş, T., & Demir, S. (2007). İlköğretim müfredatındaki hayat bilgisi derslerinin, öğrencileri fen öğrenmeye hazırlamadaki etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(33), 169-180.
Gürel, Z., Güven, Ö. G. İ., & Gürdal, A. (2003). Lise öğrencilerinin fizik dersinde öğrendikleri bilgileri hayatta karşilaştiklari olaylari yorumlamada kullanma becerilerinin değerlendirilmesi. Evaluation, 18, 65-78.
Gürsoy-Köroğlu, N. (2011). Yaşam temelli öğrenme yaklaşımının, öğretmen adaylarında çevreye yönelik ilgi, tutum ve çevre bilinçli tüketici davranışlarının incelenmesi (Yayımlanmamış Doktora Tezi), Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
Harris, J., George, N. R., Hirsh-Pasek, K., & Newcombe, N. S. (2018). Where will it go? How children and adults reason about force and motion. Cognitive Development, 45, 113-124.
Hürcan, N., & Önder, İ. (2012, Haziran). İlköğretim 7. sınıf öğrencilerinin fen ve teknoloji dersinde öğrendikleri fen kavramlarını günlük yaşamla ilişkilendirme durumlarının belirlenmesi. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi içinde (s. 27-30). Niğde: Niğde Üniveristesi.
Kahyaoğlu, H., & Yavuzer, Y. (2004). The level of knowledge of pre-service teachers related to units used in science lessons given to the 5th elementary school. İlköğretim Online, 3(2), 26-34.
Kalıpçı, E., Öztaş, H., & Özdemir, C. (2010). Çevre mühendisliği öğrencilerinin çevre ile ilgili bilgilerini günlük yaşama uygulayabilme düzeyleri. Karadeniz (Black Sea-Çernoye More) Sosyal Bilimler Dergisi, 5, 41-53.
Karaca, A., Ulucinar, Ş., & Cansaran, A. (2006). Indication of problems in laboratories in science education. Journal of National Education, 34(170), 1-7.
Karakoç, G. ve Alacacı, C. (2012, Haziran). Lise matematik derslerinde gerçek hayat bağlantılarının kullanımı konusunda uzman görüşleri. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresinde sunulan bildiri, Niğde.
Kenar, I., Sekerci, A. R., Erdem, A. R., Gecgel, G., & Demir, H. I. (2015). An investigation of ninth grade students' attitudes toward daily life chemistry. Educational Research and Reviews, 10(12), 1695.
Krause, S., Kelly, J., Corkins, J., Tasooji, A., & Purzer, S. (2009, October). Using students' previous experience and prior knowledge to facilitate conceptual change in an introductory materials course. In 2009 39th IEEE Frontiers in Education Conference (pp. 1-5). IEEE. doi: 10.1109/FIE.2009.5350761.
Küçüközer, H. (2004). The influence of teaching method which was designed according to constructivist learning theory for the first year high school students’ on simple electric circuit (Unpublished Ph. D. Thesis), Balıkesir University, Balıkesir.
Kurnaz, M. A. (2013). An investigation of physics teachers’ perceptions of context based physics problems. Kastamonu Education Journal, 21(1), 375-390.
Kurt, Ş. & Akdeniz, A. R. (2004, Ekim). Farklı düzeylerdeki öğrencilerde kuvvet kavramı ile ilgili yanılgılar, XII. Eğitim Bilimleri Kongresi Bildiriler Kitabı, Cilt 3 (s.1931-1950), Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
Le Roux, K. (2008). A critical discourse analysis of a real-world problem in mathematics: Looking for signs of change. Language and Education, 22(5), 307-326.
Madu, B. C., & Orji, E. (2015). Effects of cognitive conflict instructional strategy on students’ conceptual change in temperature and heat. Sage Open, 5(3), 2158244015594662.
Montanero, M., Suero, M. I., Perez, A. L., Pardo, P. J. (2002). Implicit theories of static interactions between two bodies, Physics Education, 37 (4): 318-323.
Moschkovich, J. N. (2002). Chapter 1: An introduction to examining everyday and academic mathematical practices. Journal for Research in Mathematics Education. Monograph, 1-11.
Mosvold, R., (2008). Real-Life Connections in Japan and the Netherlands: National teaching patterns and cultural beliefs. International Journal for Mathematics Teaching and Learning. Plymouth University, UK: Centre for Innovation in Mathematics Teaching, 1-18. https://uis.brage.unit.no/uis-xmlui/bitstream/handle/11250/185486 /Real-life%20connections%20in%20Japan%20and%20the%20Netherlands.pdf? sequence=2 adresinden edinilmiştir.
Ongun, E. (2006). Üniversite öğrencilerin ısı ve sıcaklık konusundaki kavram yanılgıları ile motivasyon ve bilişsel stilleri arasındaki ilişki (Yayınlanmamış Yüksek Lisans Tezi), Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü, Bolu.
Overton, T., & Potter, N. (2008). Solving open-ended problems, and the influence of cognitive factors on student success. Chemistry Education Research and Practice, 9(1), 65-69.
Özcan, Ö., Didiş, N., & Taşar, M. F. (2009). Students' conceptual difficulties in quantum mechanics: Potential well problems. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 36(36).
Pekdağ, B., Azizoğlu, N., Topal, F., Ağalar, A., & E., Oran, (2013). The effect of academic achievement on the level of associating chemistry knowledge with everyday situations. Kastamonu Education Journal, 21(4, Ö.S.), 1275-1286.
Romberg, T. A., & Kaput, J. J. (1999). Mathematics worth teaching, mathematics worth understanding. In Mathematics classrooms that promote understanding (pp. 15-30). Routledge.
Roychoudhury, A. (2014). Connecting science to everyday experiences in preschool settings. Cultural Studies of Science Education, 9(2), 305-315.
Sağırlı, M. Ö., F., Baş, Çakmak, Z., & M., Okur, (2016). Gerçek yaşam içerikli öğretim uygulamalarının ilköğretim matematik öğretmen adaylarının matematiği günlük yaşamla ilişkilendirebilme düzeylerine etkisi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 164-193.
Sikder, S., & Fleer, M. (2015). Small science: Infants and toddlers experiencing science in everyday family life. Research in Science Education, 45(3), 445-464.
Sözbilir, M., Sadi, S., Kutu, H., & Yıldırım, A. (2007). Kimya eğitiminde içeriğe/bağlama dayalı (context-based) öğretim yaklaşımı ve dünyadaki uygulamaları, I. Ulusal Kimya Eğitimi Kongresi, (s. 108).
Stinner, A. (2006). The large context problem (LCP) approach. Interchange, 37(1-2), 19-30.
Stolk, M. J., Bulte, A., De Jong, O., & Pilot, A. (2012). Evaluating a professional development framework to empower chemistry teachers to design context-based education. International Journal of Science Education, 34(10), 1487-1508.
Stolk, M. J., De Jong, O., Bulte, A. M., & Pilot, A. (2011). Exploring a framework for professional development in curriculum innovation: Empowering teachers for designing context-based chemistry education. Research in Science Education, 41(3), 369-388.
Stylianides, A. J., & Stylianides, G. J. (2008). Studying the classroom implementation of tasks: High-level mathematical tasks embedded in ‘real-life’contexts. Teaching and Teacher Education, 24(4), 859-875.
Tanahoung, C., Chitaree, R., Soankwan, C., Sharma, M. D., & Johnston, I. D. (2009). The effect of interactive lecture demonstrations on students’ understanding of heat and temperature: a study from Thailand. Research in Science & Technological Education, 27(1), 61-74.
Taşdemir, A., & Demirbaş, M. (2010). The level of correlation of concepts that primary students seen topics in science and technology class with daily life. Journal of Human Sciences, 7(1), 124-148.
Tekbıyık, A. (2010). Bağlam temelli yaklaşimla ortaöğretim 9. Sinif enerji ünitesine yönelik 5e modeline uygun ders materyallerinin geliştirilmesi (Yayınlanmamış Doktora Tezi), Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
Topuz, F. G., Gençer, S., Bacanak, A., & Karamustafaoğlu, O. (2013). Science and technology teachers' views about context-based approach and the applying levels†. Amasya Education Journal, 2(1), 240-261.
Türkoğuz, S. ve Yankayış, K. (2015). Isı ve sıcaklık hakkındaki kavram yanılgılarının günlük yaşama etkileri üzerine öğretmen görüşleri, Bayburt Üniversitesi Eğitim Fakültesi Dergisi, X (II), 498-515.
Ültay, E., & Ültay, N. (2014). Context-based physics studies: A thematic review of the literature. Hacettepe University Journal of Education, 29(3), 197-219.
Ulusoy, F. M., & Onen, A. S. (2014). A research on the generative learning model supported by context-based learning. Eurasia Journal of Mathematics, Science and Technology Education, 10(6), 537-546.
Ünal, H. (2008). Researching the effects of conductıng the prımary school scıence and technology lesson accordıng to context based approach on the matter-heat subject. (Unpublished Master’s Thesis), Atatürk University, Erzurum.
Valdmann, A., Rannikmae, M., & Holbrook, J. (2016). Determining the effectiveness of a CPD programme for enhancing science teachers’ self-efficacy towards motivational context-based teaching. Journal of Baltic Science Education, 15(3), 284.
Van Den Heuvel-Panhuizen, M. (2005). The role of contexts in assessment problems in mathematics. For the learning of mathematics, 25(2), 2-23.
Weinberg D. (2002). Qualitative Research Methods. Oxford: Blackwell Publisher.
Whitelegg, E., & Parry, M. (1999). Real-life contexts for learning physics: meanings, issues and practice. Physics Education, 34(2), 68.
Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Teachers’ teaching practices and beliefs regarding context-based tasks and their relation with students’ difficulties in solving these tasks. Mathematics Education Research Journal, 27(4), 637-662.
Yiğit, N., Devecioğlu, Y., & Ayvacı, H. Ş. (2002). Primary science students association of daily life in patients with events and levels. In V. International Sciences and Mathematics Education Congress, Ankara.
Yorulmaz, A., & Doğan, M. C. (2019). İlkokul dördüncü sınıf öğrencilerinin gerçekçi matematik eğitimine ilişkin görüşlerinin incelenmesi. Eğitim Kuram ve Uygulama Araştırmaları Dergisi, 5(2), 153-162.
Zhou, S., Zhang, C., & Xiao, H. (2015). Students’ understanding on Newton’s third law in identifying the reaction force in gravity interactions. Eurasia Journal of Mathematics, Science and Technology Education, 11(3), 589-599.
Published
2022-11-15
How to Cite
AKAR, Muhammed Said et al. The Effect of Teaching Practices with Real Life Content in “Heat and Temperature” and “Movement and Force” Learning Areas. European Journal of Physics Education, [S.l.], v. 13, n. 2, p. 30-52, nov. 2022. ISSN 1309-7202. Available at: <http://eu-journal.org/index.php/EJPE/article/view/332>. Date accessed: 01 dec. 2022.
Section
Articles