String Tension in Pendulum and Circular Motions: Forgotten Contributions of Huygens in Today Teaching And Learning

  • Josip Slisko Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autónoma de Puebla Puebla, México
  • Adrián Corona Cruz Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autónoma de Puebla Puebla, México


Many authors suggest that is necessary to include the most important episodes from physics history in teaching and learning in order to give students some ideas about the nature of science. The pendulum-related aspects are considered as very adequate for that purpose. Unfortunately, when some physics textbook authors present historical information, it is frequently incomplete and even false. In the first part of this article, we present and comment important results of Huygens’ analysis of two problems related to pendular and circular motions. These results were published in his work about centrifugal force “De vi centrifuga”. In the second part, we consider the destiny and different treatments of his results in today physics teaching and learning, noting that Huygens’ contribution is never mentioned. These treatments go from (1) testing students (and teachers’) ideas about tension force in pendular motion to (2) mathematical derivation of Huygens’ results or posing his problems to students. Finally, we briefly suggest how original results might be used to give students an idea about development of mathematical tools in physics and to explore students’ creative experimental thinking.


Andriesse, C. D. (2005). Huygens: The Man Behind the Principle. Cambridge: Cambridge
Bauman, R. P. (1980).What is centrifugal force? The Physics Teacher 18, 527 – 529.
Baker, G. L. & Blackburn, J. A. (2005). The Pendulum. A Case Study in Physics. Oxford: Oxford University Press.
Bell, A. E. (2012). Christian Huygens. Redditch: Read Books
Bevilacqua, F. & Kennedy, P. J. (editors). (1983). Proceedings of the International Conference on Using History of Physics in Innovatory Physics Education. Pavia: Centro Studi per la Didactica della Facolta di Scinze Matematiche, Fisiche e Naturali – Universita di Pavia.
Blackwood, O. (1944).What Is Centrifugal Force? American Journal of Physics 12, 233
Brush, S. G. & King, A. L. (editors). (1972). History in the Teaching of Physics. Proceedings of the International Working Seminar on the Role of History of Physics in Physics Education. Hannover, New Hempshire: University Press of New England.
Brush, S. G. (1974). Should the History of Science Be Rated X? Science 183, 1164-1172.
Czudková, L. & Musilová, J. (2000). The pendulum: a stumbling block of secondary school mechanics. Physics Education, 35 (6), 428 – 435. Dandare, K. (2018). A study of conceptions of preservice physics teachers in relation to the simple pendulum. Physics Education, 53(5), 055002.
Finley, F., Allchin, D., Rhees, D., & Fifield, S. (editors). (1995). Proceeding of the Third International History, Philosophy and Science Teaching Conference. Minneapolis, MN: University of Minnesota.
Galili, I., & Sela, D. (2004). Pendulum activities in the Israeli physics curriculum: used and missed opportunities. Science & Education, 13(4), 459-472.
Gil Pérez, D. (1993). Contribución de la Historia y de la Filosofía de las Ciencias al Desarrollo de un Modelo de Enseñanza/Aprendizaje como Investigación. Enseñanza de las Ciencias 11 (2), 197-212.
Hagenow, C. F. (1935). Is There a Centrifugal Force? American Journal of Physics 3, 190.
Hanson, N. R. (1955). The History and Philosophy of Science in an Undergraduate Physics Course. Physics Bulletin, 6(6), 116 – 128.
Jagger, J. & Lord, K. (1995). What Is Centrifugal Force? The Mathematical Gazette 79 (486), 484-488.
Jung, W. (1994). Toward Preparing Students for Change: A Critical Discussion of the Contribution of the History of Physics in Physics Teaching. Science & Education 3, 99- 130.
King. B. (1991). Beginning Teachers’ Knowledge and Attitudes Towards History and Philosophy of Science. Science Education 75(1), 135-141. Kumar, N. & Juneja, J. K. (2006). Comprehensive Physics for AIEEE. Objective Questions as per New Syllabus. New Delhi: Golden Bells.
Leite, L. (2002). History of science in science education: Development and validation of a checklist for analysing the historical content of science textbooks. Science & Education 11(4), 333-359.
Lenzen, V. F. (1939). Centrifugal Force. American Journal of Physics 7, 66
Leone, M., Robotti, N., & Verna, G. (2018). ‘Rutherford’s experiment’ on alpha particles scattering: the experiment that never was. Physics Education, 53(3), 035003.
Matthews, M. R. (1994). Science Teaching: The Role of History and Philosophy of Science. New York: Routledge.
Matthews, M. R (2000). Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion can Contribute to Science Literacy. Dordrecht: Springer
Matthews, M. R., Gauld, C. F. & Stinner, A. (editors) (2005). The Pendulum. Scientific, Historical, Philosophical and Educational Perspectives. Dodrecht: Springer.
Matthews, M. R. (2014). Science Teaching: The Role of History and Philosophy of Science. 20th Anniversary Revised and Expanded Edition. New York: Routledge.
Navarro, V. (1983). La Historia de las Ciencias y la Enseñanza. Enseñanza de las Ciencias 1(1), 50-53.
Pook, L. P. (2011). Understanding Pendulums. A Brief Introduction. Dordrecht: Springer.
Rodríguez, M. A., & Niaz, M. (2004). The oil drop experiment: An illustration of scientific research methodology and its implications for physics textbooks. Instructional Science 32(5), 357-386.
Russel, T. H. (1981). What history of science, how much, and why? Science Education 65, 51-64. Ryder, J. (2001). Making physics common sense. Physics World, 14(3), 15-16.
Sánchez Ron, J. M. (1988). Usos y Abusos de la Historia de la Física en la Enseñanza. Enseñanza de las Ciencias 6, 179-188.
Santos-Benito, J. V. & Gras-Marti, A. (2005). Ubiquitous drawing errors for the simple pendulum. The Physics Teacher 43(7), 466 – 468.
Sears, F. W., Zemansky, M. W. & Young, H. D. (1963). University Physics. Sixth Edition. Reading: Addison-Wesley Publishing Company.
Serway, R. A. & John W. Jewett, J.W. (2008). Physics for Scientists and Engineers with Modern Physics. Seventh Edition. Belmont, CA: Thomson - Brooks/Cole
Slisko, J., & Hadzibegovic, Z. (2017). Cavendish experiment in physics textbooks: Why do authors continue to repeat a denounced error?. European Journal of Physics Education, 2(3), 20-32.
Thao-Do, T. P., & Yuenyong, C. (2013). Nature of science presented through the history of heat in Vietnamese physics textbooks. Some suggestions for teachers. Journal of Applied Sciences Research, 9(4), 2575-2584.
Toh, C. S. (2016). A-Level Study Guide Physics. Singapore: Step-by-Step International. Trigueros Gaisman, M. (2006). Ideas acerca del movimiento del péndulo: un estudio desde una perspectiva de modelación. Revista mexicana de investigación educativa, 11(31), 1207-1240 Viennot, L. (1985). Analyzing students’ reasoning: Tendencies in interpretation. American Journal of Physics 53(5), 432-436. Waldrip, B., & Rusdiana, D. (2012). Impact of representational approach on the improvement of students’ understanding of acceleration. Jurnal Pendidikan Fisika Indonesia 8(2), 161 – 173.
Wei, B., Li, Y., & Chen, B. (2013). Representations of Nature of Science in Selected Histories of Science in the Integrated Science Textbooks in China. School Science and Mathematics, 113(4), 170-179.
Yoder, J. G. (2004). Unrolling time. Christiaan Huygens and the mathematization of nature. Cambridge: Cambridge University Press.
How to Cite
SLISKO, Josip; CRUZ, Adrián Corona. String Tension in Pendulum and Circular Motions: Forgotten Contributions of Huygens in Today Teaching And Learning. European Journal of Physics Education, [S.l.], v. 10, n. 4, p. 55-68, dec. 2020. ISSN 1309-7202. Available at: <>. Date accessed: 22 sep. 2023.