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Abstract 
In this paper we use seven quantitative measures of student performance to compare the performance of students 
enrolled in three physics courses (two hybrid and one MOOC) that have some common features. We find that, 
despite the fact that these courses have different audiences, aims, and methods, the measures presented here place the 
students from all three courses on the same scale and reveal performance similarities. All measures are compared 
pairwise and the sign of the correlation between each pair is consistent for all courses. The percentage-based 
measures all positively correlate with each other and with Item Response Theory measure, while the measures based 
on average number of submissions positively correlate together but anti-correlate with some percent-based and IRT 
measures. Our findings suggest that for all course types students who get a higher fraction of problems correct tend 
to use fewer submissions to do so and have a higher IRT skill, while students in a MOOC choose more frequently to 
not attempt a problem upon opening it than students enrolled in hybrid courses. 
Keywords: Problem solving, Data mining, Student performance
 
 
INTRODUCTION 
 
With the advent of online Course Management Systems (CMSs), much richer data are available 
now than ever before for instructors and researchers. This allows for more in-depth analysis of 
how students behave when they solve physics problems. However, determining how successful 
students are in our courses and how successful our courses are at teaching students are complex 
tasks that are often  correlated with final course grades (Beichner, Saul, & Abbott, 2007; 
Beuckman, Rebello, & Zollman, 2007; S. W. Bonham, Deardorff, & Beichner, 2003; Breslow et 
al., 2013; Cheng, Thacker, Cardenas, & Crouch, 2004; J. Docktor, Heller, Henderson, Sabella, & 
Hsu, 2008; J. L. Docktor & Mestre, 2014; Finkelstein & Pollock, 2005; S. J. Pollock, 2009; 
Sadler & Tai, 2001); exam grades (S. W. Bonham et al., 2003; Deslauriers, Schelew, & Wieman, 
2011; J. Docktor et al., 2008; J. L. Docktor & Mestre, 2014; Mestre, Hart, Rath, & Dufresne, 
2002); or FCI, FMCE, or other research-validated assessment scores (Bao et al., 2009; Beichner 
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et al., 2007; S. W. Bonham et al., 2003; Cheng et al., 2004; J. Docktor et al., 2008; J. L. Docktor 
& Mestre, 2014; Finkelstein & Pollock, 2005; Harper, Etkina, & Lin, 2003; Henderson, 2002; 
Perkins, 2005; S. J. Pollock, 2009; Steven J. Pollock & Finkelstein, 2008; Taasoobshirazi & 
Sinatra, 2011). Research points out that analyses based solely on these measurements “provide 
limited and sometimes misleading information about student learning.” (Fraser et al., 2014) In 
this paper, we show how data available in CMSs can supplement and enrich the existing 
methods.  We use data from three physics courses offered on two CMSs (LONCAPA 
(Kortemeyer et al., 2003, 2008; “LON-CAPA,” n.d.) and edX (“edX,” n.d.; S. Rayyan, Seaton, 
Belcher, Pritchard, & Chuang, 2013)) to compare seven measures of student success and discuss 
their relationships and what they may say about student performance. We also use the variety of 
course types for which we have available data to explore the differences between student 
performances in different types of courses. 

As CMSs are in use in a variety of different course types, we perform this analysis for a 
Hybrid course that has in-person lecture and lab sessions with online-only homework, a Hybrid 
course in a flipped classroom with no labs and online-only homework, and for a Massive Open 
Online Course (MOOC) that is entirely online. This not only gives us a way to examine our 
measures of success in a variety of contexts but it also allows us to look at the differences in skill 
present between these types of courses. All the courses considered in this study are introductory 
mechanics courses and their details are presented below. 

Course A: Hybrid Algebra-Based Course. The first course we have analyzed is an 
introductory algebra-based physics course offered in 2008 at a research university. Split across 
two sections, this course had 208 students finish at least one homework assignment, with the 187 
of those who passed the course being the focus of our analysis. The course had peer-instruction 
lecture, lab, and recitation sessions, as well as in-person class quizzes and exams, but the 
homework was administered and graded using the CMS LON-CAPA.  

Course B:  Hybrid Calculus-Based Course. The second course we have analyzed is a 
calculus-based physics course offered at a top research university. This course is offered every 
spring, for students who earned less than a C in the similar prior course offered in the fall 
semester. We use data from the Spring 2013 offering of the course. This course used the MAPS 
pedagogy (Pawl, Barrantes, & Pritchard, 2009; Saif Rayyan, Pawl, Barrantes, Teodorescu, & 
Pritchard, 2010) which was proven to improve students' learning attitudes about science, 
performance on the course material, and future physics grades. The grading policy was flexible, 
students having the freedom to earn “homework” points by choosing to solve easy, medium, and 
hard problems that have certain points associated with them – the higher the difficulty of the 
problem, the higher the number of points associated with it.  Consequently, the percent of 
students attempting the online homework problems was variable.  From 47 students enrolled in 
the course, only 35 completed over 50% of available items and are the subject of our analysis. 

Course C: MOOC - 8.MReVx. The third course we have analyzed is the 2013 offering of the 
introductory physics MOOC 8.MReVx designed by the RELATE (REsearch in Learning 
Assessing and Tutoring Effectively) Group (“RELATE | Research in Learning, Assessing and 
Tutoring Effectively,” n.d.) at the Massachusetts Institute of Technology and offered on the edX 
platform. (“Mechanics Review,” n.d.) Our analysis focuses on 1,080 participants (out of 16,787 
enrolled in the course) who attempted more than 50% of available problems, with a certificate of 
completion being offered to students who achieved more than 60% of available points 
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(N=1,033). This course used the same physics items as Course B and thus provides an excellent 
comparison to the performance of students in a hybrid course.  

Table 1 has a comparison of the courses in order to highlight some of their pertinent 
similarities and differences. 
 
Previous Research 
A previous study comparing the students’ performance of Courses B and C found that students in 
the MOOC had a higher average skill than students in the on-campus course.(K. Colvin, 
Champaign, & Liu, 2014)  
 

Table 1. Information about each course 
 

 Course A Course B Course C 
Course size 187 35 1033 

HW 
Format 

Online – End-of-unit 
problems 

Online – End-of-unit 
problems 

Online – Both end-of-unit 
and conceptual mid-unit 

problems 
Lecture 
Format 

Live given by a single 
instructor 

Flipped Classroom Lecture videos, with and 
without a narrator 

Labs 
Format 

Traditional – Small groups 
led by a TA 

None  Digital – In the style of 
PhET 

Exams Traditional – In-person 
during regular class time 

Traditional – In-person 
during regular class time 

Optional midterm and 
final exam 

Topics & 
Order 

Forces, kinematics, circular 
motion, energy, momentum, 

fluids, and waves 

Forces, kinematics, 
momentum, energy, 

rotational motion, and 
oscillations 

Forces, kinematics, 
circular motion, energy, 

momentum, and rotational 
motion 

 
Other previous research by Lieberman et al(Dubson, Johnsen, Lieberman, Olsen, & 

Finkelstein, 2014; Lieberman, Dubson, Johnsen, Olsen, & Finkelstein, 2014) has found that a 
MOOC designed with exactly the same materials as an offline course had no worse educational 
outcomes than the offline course when comparing the measures of various standardized exams 
and the assignments given to each group of students. Similar research by Konstan et al(Konstan, 
Walker, Brooks, Brown, & Ekstrand, 2015) has found that in another identical MOOC/offline 
course pair the primary predictor of success was effort put into the course and not the type of 
course taken. An additional study found that student performance on online homework is no 
worse than performance on homework collected and graded by hand.(S. Bonham, Beichner, & 
Carolina, 2001) 
 
Measures of Student Success 
Using the data commonly available in a CMS, we define several measures of success - some of 
them can be determined with data available even from a traditional, fully offline course, while 
others can only be obtained in a CMS. In a CMS, students are typically given multiple attempts 
for solving a given item. For all three courses analyzed here, a student is considered to have 
gotten the right answer if he or she did so on any attempt made on the item. 



     European J of Physics Education Volume 6 Issue 3       Balint et al.	
 

	35	

We define an "item" as an individual question with a single response field that may or may 
not be embedded within a larger problem. The response field may be free-response, radio 
buttons, checkboxes, or a field for the student to draw in, but each item only has one response 
field. 

The first measure we define is simplest and most closely related to the student’s grade in the 
course. It measures how many items were solved correctly out of how many were offered, called 
by us "Percent Correct" or "% Corr": 

 
 

% Corr = 
Number of Items Solved Correctly 

Number of Items In Course  
(1) 

 
 This measure can be easily calculated in a traditional course, and as such it and its 
relationships to the other measures may be of particular interest to instructors. 
 The second measure is calculated from the number of items students solved out of how many 
items they opened, and is called "Percent Correct of Accessed" or "% Corr Access": 

 
 

% Corr Access = 
Number of Items Solved Correctly 

Number of Items Accessed  
(2) 

 
 This measure can only be available in CMSs. It has the potential to discriminate between 
different types of learners; for example, students with a low score on this metric may belong to 
Shell’s profile of the “surface learning” student or “apathetic” student. (Shell & Husman, n.d.; 
Shell & Soh, 2013)  

The next measure is defined as the number of items the student solved incorrectly out of how 
many items they tried, called "Percent Wrong of Attempted" or "% Wrong Att":  

 
 

% Wrong Att  =
# of Items Attempted But Not Solved Correctly 

Number of Items Attempted  
(3) 

 
 Though of course students have a wide range of values of this measure, students in traditional 
courses tend to attempt every available item since every item is graded and adds to the student’s 
final score, even if they may not get the problem correct. This differs from a MOOC where 
students can open a problem and decide not to attempt the problem because the course is graded 
on a pass/fail scale, (Ghadiri, Qayoumi, & Junn, 2013; JO, PARK, KIM, & SONG, 2014; 
Konstan et al., 2015; Patterson, 2014) causing this measure to be lower for these MOOC 
students. 

The following two measures involve multiple attempts to correctly solve an item and are only 
available for online homework, which allows for multiple submissions while traditional 
homework does not. (Kortemeyer, 2014a) The first measure is the average number of tries per 
correct submission named "Subm Per Correct Item": 

 
 

Subm Per Corr =
# of Subm Used on Corr. Answered Items 

# of Correctly Answered Items  
(4) 
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and the second is a measure of the average number of tries out of all attempted items named 
"Submissions Per Attempted Item": 
 
 

Subm Per Item =
Number of Submissions Used
Number of Items Attempted  

(5) 

 
 These measures begin to determine how skilled a student may actually be, since the most 
skilled students are expected to have low values on both of these measures as they do not require 
as many submissions to get a correct answer. Students who only attempt problems that they 
expect to be able to answer correctly will likely have very close values for these two measures, 
while students who attempt every problem regardless of their skill may have different results. 
(Ghadiri et al., 2013; JO et al., 2014; Konstan et al., 2015; Patterson, 2014) In the courses 
considered, the numbers of submissions allowed on homework items range from 3 to 10; for quiz 
and assessment items, this range is lower (around 2 to 4). 
 Another measure we consider here is the students’ ability determined by a Two-Parameter 
Logistic Item Response Theory (IRT). (Bergner et al., 2012; K. F. Colvin et al., 2014; 
Kortemeyer, 2014b) These skills together with the IRT question’s difficulty can be used to 
determine the probability that a student will correctly answer an item. The student skill is 
constrained to be a normal distribution with a mean of 0 and a standard deviation of 1. For the 
purposes of this study, the students from Course B were put on the same IRT scale as those from 
8.MReVx using the anchor item IRT equating method. This was possible as the two courses 
shared a majority of items.  
 In the follow up sections, tables and figures we will use the labels we have introduced above 
to help the reader follow our work. 
 
RESULTS 
 
Figures 1-3 show the correlation matrices for the student body on each pair of measures for 
Course A, Course B, and the MOOC (Course C) respectively. The values in the top right of each 
grid of graphs show the Pearson r correlation coefficient (Fraenkel, Wallen, & Hyun, 2014) of 
that pair of measures. For example, in Fig. 1 r = 0.236 corresponds to the comparison of % 
Wrong Att and Subm Per Corr, while in Fig. 3 the r-value of 0.942 is for Subm Per Corr vs. 
Subm Per Item. The possible values for r vary from -1 (perfect anti-correlation) to 1 (perfect 
correlation), and the standard error values for a given r-value (discussed in the caption for each 
figure) are determined using Eq. 7, where n is the sample size: (Bowley, 1928; Efron, 1979; 
Ellison, 2006; Park, EunsikLee, 2001; Shieh, 2010) 

 
 

σ =
1− 𝑟!

𝑛 − 2
 

(6) 

 
 An important result is that all three courses show the same sign of the correlation and general 
behavior of the pair’s relationship for every pair of measures. The percentage correct measures 
both positively correlate with each other and with IRT, while the two average submission 
measures and the percentage wrong measure positively correlate together but negatively 
correlate with the two percent correct and the IRT measures. These results in general imply that, 
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for our students, those who get a higher fraction of problems correct will use fewer submissions 
to do so and have a higher IRT skill. Additionally, students who tend to get low fractions of 
problems correct tend to have low IRT skill and use a higher number of submissions to do so. 
This is true for all three courses examined, and is independent of course type. 
 A numerical comparison of the three courses is provided in Table 2, which gives the values of 
the divisions between quartiles for each measurement for each course. Note that the distributions 
of students are skewed with a narrower distribution of high-skill students near the limit of each 
measure and a wide distribution of low-skill students. 
 We now choose several examples to illustrate how the measures we introduced can help 
instructors better understand some aspects of student performance. A strongly correlated pair of 
measures in Course A and 8.MReVx and weakly correlated in Course B is % Corr vs. % Corr 
Access with r-values of 0.722 in Course A, 0.298 in Course B, and 0.807 in 8.MReVx. We 
attribute this low correlation to the differences in grading standards between the MOOC and the 
hybrid courses and discuss this difference further below. 
 

 

 
 

Figure 1. Distributions of the student body across all measures for Course A (N=187). Error values vary 
from 0.01 to 0.07 for |r|=0.897 to |r|=0.086 respectively. 
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 An anti-correlated pair of measures that appears in all courses is % Corr Access and Subm Per 
Corr with values of r = - 0.234, r = - 0.558, and r = - 0.673 in Course A, Course B, and the 
MOOC respectively. This anti-correlation implies that students having a lower average number 
of submissions on correctly answered items tend to have a higher percentage correct of problems 
that they attempted. The most striking result from these comparisons of measures lies not in the 
correlation coefficients for a single course but the consistency of the distributions of the pairs of 
measures across the three courses. 
 Another small but still significant difference lies in the relationship between % Wrong Att and 
% Corr Access. In the Hybrid courses, these two measures have a strict correlation of r = -1.000. 
In 8.MReVx these measures have a correlation of r = -0.921 which, while still high, is not a strict 
correlation. We attribute this difference (although small) to the pass/fail nature of the online 
course allowing the students to decide not to solve a problem, whereas that is not a choice that 
many students make in the traditional courses as every problem counts towards a students’ final 
grade. 
 

 
 

Figure 2. Distributions of the student body across all measures for Course B (N=35). Error values vary 
from 0.01 to 0.17 for |r|=0.967 to |r|=0.074 respectively. 

 



     European J of Physics Education Volume 6 Issue 3       Balint et al.	
 

	39	

 
 

Table 2. Statistics for each measure of student success for each course. The three numbers given are the 
divisions between quartiles; for example, 82.5% is the cutoff between the highest and second-highest 

quartiles in Course B in Percent All. We analyze these statistics rather than the mean/median and 
standard deviation because the distributions of students on all of these measures are skewed: the 

distribution of low-skill students is typically wider than the distribution of high-skill students. 
 

 
Measures of student 

success 
Course A (N=187) Course B (N=35) 8.MReVx (N=1080) 

Q1/Q2 Q2/Q3 Q3/Q4 Q1/Q2 Q2/Q3 Q3/Q4 Q1/Q2 Q2/Q3 Q3/Q4 
% Corr 70.7% 85.0% 92.7% 70.9% 77.5% 82.5% 61.5% 71.9% 84.2% 
% Corr Access 86.3% 92.2% 96.4% 84.2% 88.8% 91.4% 71.8% 81.6% 87.7% 
% Wrong Att 1.7% 7.6% 13.6% 8.1% 10.8% 12.5% 3.9% 8.18% 15.0% 
Subm per Corr 1.59 1.71 1.85 1.33 1.41 1.48 1.17 1.24 1.33 
Subm per Item 1.68 1.83 2.04 1.37 1.46 1.54 1.20 1.30 1.42 

 
 
 

 
 

Figure 3. Distributions of the student body across all measures for 8.MReVx (N=1080).  Error values 
vary from 0.003 to 0.02 for |r|=0.942 to |r|=0.509 respectively. 
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 An additional percentage-based measure was chosen and analyzed but not shown in the above 
tables. This measure was chosen as a way to determine the fraction of problems that a student 
opened and decided to attempt, called “Percent Attempted” or “% Att”:  
 
 

% Att= 
Number of Items Attempted 
Number of Items Accessed  

(7) 

 
 This measure is interesting because it is the only measure presented in this study that 
discriminates between types of courses. For both traditional courses this measure is >98% for 
every student, while for the MOOC this measure has a wide distribution that is shown (with a 
comparison to % Corr) in Fig. 4. This finding suggests that students in a MOOC choose more 
frequently to not attempt a problem upon opening it. It is unknown whether that is a consequence 
of the online nature of the course or its pass/fail method of awarding course certificates. 
 Despite the above-mentioned differences, we see that though these courses have significantly 
different audiences, aims, and methods, the measures presented here place the students from all 
three courses on the same scale and reveal similar distributions of students across all measures, 
even for a course with extremely low statistics. We believe that this shows the robustness of the 
measures and the correlations between measures, and the applicability of this analysis outside of 
the course types discussed here. 

 

 
Figure 4. Percent Attempted vs Percent Correct for all students in the MOOC (Course C). 

r=0.6276±0.018 
 
CONCLUSIONS 
 
Through the analysis of problem performance statistics already available to Physics instructors, 
we have found deep connections between various simple measures of student success. We also 
see the relationships between these simple measures and more complex ones such as average 
number of attempts used when submitting homework answers and Item Response Theory. These 
measures are consistent across courses teaching material of varying levels to groups of students 
with varying levels of skill on various platforms. We see that correlations between pairs of these 
measures have a larger error in courses with a smaller population, as expected, but that the 
correlations have consistent signs between all three courses. 
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 We have documented several measures of performance that are simple to calculate and 
identified which have strong correlations or anti-correlations with IRT skill.  We have also 
shown that there are distinctions between the performances of students in fully online vs. hybrid 
online-offline courses that should be anticipated by instructors moving their courses into the 
online realm.  
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