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Abstract 
In this work, we present a pedagogical strategy to describe the diffraction phenomenon based on a didactic 
adaptation of the Feynman’s path integrals method, which uses only high school mathematics. The advantage of 
our approach is that it allows to describe the diffraction in a fully quantum context, where superposition and 
probabilistic aspects emerge naturally. Our method is based on a time-independent formulation, which allows 
modelling the phenomenon in geometric terms and trajectories in real space, which is an advantage from the 
didactic point of view. A distinctive aspect of our work is the description of the series of transformations and 
didactic transpositions of the fundamental equations that give rise to a common quantum framework for light and 
matter. This is something that is usually masked by the common use, and that to our knowledge has not been 
emphasized enough in a unified way. Finally, the role of the superposition of non-classical paths and their 
didactic potential are briefly mentioned. 
Keywords: quantum mechanics, light and matter diffraction, Feynman’s Sum of all Paths, high education 
 
 
INTRODUCTION 
This work promotes the teaching of quantum mechanics at the basic level of secondary 
school, where the students have not the necessary mathematics to deal with canonical models 
that uses Schrodinger equation. The alternative teaching line of quantum mechanics that uses 
Feynman´s approach started in 1998 (Taylor et al. 1998),

 based on the nontechnical 
Feynman’s book (Feynman, 1985) ‘QED: The Strange Story of Light and Matter’. Although 
the path integral technique is a sophisticated tool, indispensable in advanced areas of physics 
such as quantum field theory, Feynman showed that at least the essence of the method is 
revealed through a simple mathematics, consisting of adding ‘arrows’.  

The early works triggered a considerable amount of teaching proposals based on the 
transposition of the path integrals method. In this context, transposition refers to the idea of 
“didactic transposition” (Chevallard, 1985), i.e. the meaningful transformation of a highly 
technical knowledge into an accessible one, without losing its nature. This has led to the 
recognition that the Feynman approach and some of its derivations serve as an interesting 
introduction to the foundations of quantum mechanics to the students. The strength of the 
method consists in that it allows to describe basic aspects of quantum mechanics associated 
with light and matter, in a unified way and with elementary mathematical means, as we will 
illustrate in this work. Several works have addressed the Feynman method (Hanc et al. 2003; 
Styer, 2000; Dobson et al. 2006; Ogborn and Taylor, 2005; Beau, 2012; Malgieri et al., 2014; 
Malgieri et al., 2015, 2017) and our contribution to the subject ranges from proposals of 
didactic sequences to the analysis of the implementations in secondary school courses (Fanaro 
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et al., 2008, Fanaro et al., 2009; Fanaro et al., 2012; Fanaro et al., 2012A; Fanaro et al., 
2012B; Fanaro et al., 2014). 

The teaching of the diffraction phenomenon has been traditionally introduced from a 
classical wave viewpoint, where the textbook approach is based on the context of 
electromagnetic waves (Born and Wolf, 1999). Usually at the basic level (Halliday et al., 
2011) certain limit cases such as the Frauenhofer diffraction are developed, where the solution 
does not use the Maxwell equations or the Kirchhoff’s theory explicitly. Although the 
construction based on the Huygens-Fresnel principle is suitable, it is slightly difficult to 
introduce the subject even at the high school level (Temes, 2003). 

The analysis of the problems and difficulties that the students face with the wave 
treatment of these phenomena, has been investigated in several works (Colin and Viennot, 
2001; Ramil et al., 2007; Wosilait et al., 1999; Maurines, 2010) although this is not the focus 
of the present paper. 

The quantum diffraction phenomenon can be analyzed from exact (in very exceptional 
cases), perturbative, semi classical and numerical viewpoints. The diffraction of electrons 
through a single finite slit has been considered from the point of view of wave mechanics, via 
the Schrodinger equation (Gitin, 2013; Michelini and Stefanel, 2008) and path integrals 
(Feynman and Hibbs, 1965), whereas the quantum theory of light diffraction is considered in 
Wua et al. (2010). 

This paper is structured as follows. In section II, we show how to build a time 
independent quantum mechanical model for the diffraction using an adaptation of the 
Feynman’s method. We obtain a general expression applied to the diffraction of a 
nonrelativistic particle of mass m (e.g. electrons) in section III, and subsequently to the case of 
the light, in section IV. Finally, in section V, we outline a didactic strategy to teach this issue 
at high school level. 
 
DIFFRACTION BY A SINGLE SLIT FROM FEYNMAN’S APPROACH 
When an electron beam passes through a slit of adequate size, a special distribution appears 
on a detection screen behind the slit. This pattern contains a central maximum, where most 
electrons are detected. Around the central maximum, other lateral and successively smaller 
maxima appear, indicating that some electrons are also detected there. In addition, between 
these maxima there are places on the detection screen where there is virtually no electron 
detection. This experiment, imagined in the first times of the quantum mechanics could be 
carried out many years later (Tonomura et al., 1989; Bach et al., 2013) revealing one of the 
puzzling aspects of the behavior of the matter at atomic scale.  

However, this unexpected feature from the everyday perspective of particle is totally 
natural and intuitive from a wave viewpoint. In fact, the interference of waves is a usual 
phenomenon that can give rise to an alternating pattern of maxima and minima as observed in 
this experiment. On the other hand, when the slit is enlarged the main maximum becomes 
more intense, indicating that practically all electrons are detected there, and the secondary 
ones tend to disappear. In this limiting case, the electrons behave more like a beam of 
particles, copying the profile of the slit on the screen. 

The light behaves similarly: when monochromatic light (laser) from a distant source 
passes through a narrow slit and is detected on a screen, the light distributes in a characteristic 
pattern consisting of a broad and intense central maximum, surrounded by narrower and less 
intense maxima. Performing this experiment with special conditions of the light (for example 
with light of very weak intensity), we obtain a pattern that resembles and shares common 
characteristics with the electrons distribution. Moreover, when the slit is enlarged the light 
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passes and reproduces the shape of the slit marking a defined border between light and 
shadow on the screen.  

In this way, the properties of light and matter that exhibit a common phenomenology 
in many respects. This suggests a unified description in terms of a model that deals in the 
same terms with light and matter. The quantum model gives an appropriate via to this purpose 
and here we will consider a didactic transposition of the Feynman method.  

First, let us stress that in quantum mechanics the certainty of a given event is not 
predicted, as it is in classical physics. In quantum mechanics, the event probability is 
predicted in relation to other events (relative probability). For example, the rules of quantum 
mechanics predict the probability that an electron or light emitted from the source is detected 
at a given point on the screen behind a finite slit.  

The way in which the time independent probability of a given event is calculated in the 
adapted Feynman method presented here can be summarized in the following sequence of 
steps.  

 
(I) The initial (i) and final (f) state of the event are identified. In our case the initial state 

is the emission of monochromatic (light) / mono-energetic (matter) and the final state 
is the detection on the screen.  

(II) For each real space path connecting (i) with (f) we associate a two-dimensional vector 
(a small arrow in the popular language of Feynman2. In the context of this work its 
length will always be the same for all paths and we will arbitrarily assign a unit 
length. On the other hand, its direction or phase will be fixed by the angle 𝜙 that it 
forms with the x-axis. 

(III) The angle associated with each path (phase) is proportional to the length (L) of the 
path, i.e. 𝜙 = 𝐶	𝐿. The constant of proportionality C will depend on the case in 
question, matter or light, but it will have an inverse of length dimension. This 
association of the phase with the length path is not entirely general, but it serves our 
purpose. In this sense, it should be considered as part of the didactic adaptation, as we 
will discuss later. 

(IV) Finally, we add all the vectors corresponding to the different paths connecting (i) with 
(f). The square module of the resulting vector is proportional to the probability of the 
event considered. 

 
In practical terms, the sum of all infinite contributions from the different paths 

represents a major difficulty in Feynman’s original method, even more in a version adapted 
for didactic purposes like this one. To address this problem, we rely on the special role that 
the ‘classical’ paths can play, which in turn is reminiscent of well-established techniques of 
semi-classical approximation in quantum mechanics (Shankar, 1980). The central idea here is 
that in many circumstances the shortest paths -which in a broad sense are the paths followed 
by macroscopic objects- along with those of their close environment, have a dominant 
contribution to the sum. The reason is that for arbitrary paths their associated vectors will 
point to arbitrary directions because their lengths are not related. The collective effect of these 
majoritarian paths will be a mutual ‘statistical’ cancellation, since there is no preferred 
direction where to point. However, the vectors associated with the shortest path and its 
surroundings will point approximately in the same direction, that is, they will contribute in 
phase to the sum. This is because the variations around the minimum are smaller than around 
any other point (excepting the maximum not considered here), which is related with the basic 
property of the extremes of a function.  
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The strategy here will be to consider the family of shortest classical paths, and totally 
disregard the immense majority represented by the remaining contributions. This transforms 
the problem of the sum into something approachable from a didactic perspective. Although at 
first glance this would appear to strip away the quantum character of the model, as we shall 
see, it remains sufficient for the quantum aspects to survive, mainly through the way in which 
the different classical paths interfere in the calculation of probability (step IV). 

To apply this strategy to our problem we will consider that both the source and the 
detection screen are infinitely far from the central screen containing the slit, i.e. the special 
case of Frauenhofer diffraction. Since the path differences occur only from the slit to the 
detection point, we only consider this part of parallel paths in direction to that point, as shown 
in Figure 1(a). For teaching purposes, we will consider only a subset of N equally spaced short 
paths along the slit, which are sufficient to capture the physics of the problem. The reason for 
choosing equally spaced paths is that the construction of the sum becomes very simple and 
allows us to do a direct geometric interpretation.  

 

 
(a)                                                    (b) 

 
Figure 1. (a) Schematic setup of the single slit diffraction, considering a set of N alternative paths. 

The source and the detection screen (not shown) are very far left and right respectively.  
(b)Detail of two consecutive paths and the path length difference which will play a relevant role in the 

discussion. 
 
To this aim, let us consider Figure 1 (b) where a detail of the paths is shown. As it can 

be seen, the difference in length ∆𝐿 between two successive paths is constant: 
 

∆L = d sin(θ)         (1) 
 

This makes the phases associated with adjacent paths also vary in the same way, since 
the phases are proportional to the lengths of the paths. In terms of the distance d between 
paths along the slit and the angle pointing in the direction of detection θ, the phase variation 
Δ𝜙	between two neighboring paths is 

 
Δ𝜙 = 𝐶	∆𝐿 = 𝐶	𝑑 sin 𝜃         (2)  

 
Figure 2 shows an example of the sum (step IV) of N=7 paths, where the vectors form 

an open polygon of N sides and the vertices are on a circle. Although this sum can easily be 
done analytically, it is instructive from a didactic viewpoint to approach it geometrically. 
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Figure 2. The sum of (N=7) direct classical paths with successive phase differences	𝛥𝜙. In this 
construction, for simplicity the phase of the first vector is arbitrarily considered zero, and therefore the 

successive phase differences are directly indicated as 𝜙. This notation will be used hereafter. Note that the 
vector angle from the x-axis sequentially increases by (n-1) 

 
By construction note that if r is the radius of the circle in Figure 2, it satisfies on the 

one hand: 
 

𝒗𝒎 = 2	𝑟 sin
𝜙
2

 
 

On the other hand, for the resulting vector: |𝑣𝒔𝒖𝒎| 	= 2	𝑟 sin(;	<
=
). Combining these 

two results to eliminate r, and considering that 𝒗𝒎 = 1 we get: 
 

𝒗𝒔𝒖𝒎 =
?@A BC

D

?@A C
D

       (3) 

 
which squared gives the relative probability, 
 

𝑝 𝜙 ∝
?@AD 		 BCD
?@AD 		 CD

        (4) 

 
This expression gives the detection probability of light detection in a certain direction 

given by	𝜃 (Fig. 1a). 
The behavior of the function (4) is determined by its quotient. For	𝜙 = 0 the function 

tends to 𝑁= at that limit, since the sine and the argument are approximately equal here. On the 
other hand, 𝜙 = =

;
𝜋 corresponds to the first minimum in the P(𝜙) curve. Analogously, the 

second maximum is determined, being its amplitude much smaller than the main maximum. 
With this analysis, we can describe the dependence of the probability distribution in terms of 
𝜙. However, in pedagogical terms it is much more efficient to explore the geometric 
construction of the sum as shown in Figure 3.  
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Figure 3. General structure of quantum Frauenhofer diffraction. Blue solid line indicates the 

probability distribution (3) on the detection screen. The insets illustrate the construction of the 
distribution curve from the quantum superposition of N= 5 classical paths. For each phase difference 
𝜙 the contributions of the paths (black arrows) form a regular polygonal chain. The corresponding 

probability is proportional to the square length of the resulting vector (red arrows).  When the phase 
difference 𝜙 = 0, as in case (a) all paths are equivalent (the chain is totally flat) and the contribution 

to the probability is maximal. By increasing ϕ, the chain curves and the probability decreases as in 
case (b). Following this trend there would be a phase difference where the chain closes on itself, 

forming in this case a pentagon as shown in (c). In this case, the probability becomes zero. Finally, 
case (d) illustrates the situation where the phase difference is such that the chain completes more than 

one cycle without closing, giving a relative maximum to the probability. This structure of a central 
maximum surrounded by lobes of smaller maxima is repeated for 𝜙	𝑚𝑜𝑑	2𝜋 (not shown here). 

 
Here we consider N=5 to better visualize the geometric figures formed. The central 

maximum is produced by the in-phase contribution of all the paths, and the minimum by the 
total cancellation through the whole number of turns. The intermediate regions are the product 
of partial cancellation. The caption of Figure 3 describes in more detail the structure of the 
polygonal formed in this case. 

At this moment, the reader may have the impression that the well-known phasor 
method, commonly used in optics and, in general, in any wave problem (addition of 
electromagnetic fields, composition of harmonic motions, etc.) is simply being described to 
determine the amplitude from a series of partial components (close circles for nodes, in 
diffraction, and open arcs for any other case). However, the novelty that presents this work is 
that the Integral Path method (in its adapted version for didactic proposes) uses the 
mathematics of phasors in the context of quantum mechanics and analyze its conceptual 
consequence: it allows to analyze with students that do not have sophisticated mathematics 
tools, the phenomenon of diffraction, from a model that overcomes the wave-matter 
opposition.  

So far, the discussion is very general and does not make specific allusion to electrons 
or light so it can form the basis of an approach that can extend in several directions. Some of 
the different possibilities are explored in the next sections. 
 
ELECTRONS DIFFRACTION 
In our proposal for electrons (and matter in general) we will consider situations independent 
of time, where the energy E is conserved. By avoiding dynamics, we restrict the type of 
questions and physical situations that can be considered. However, this brings the advantage 
of analyzing the paths directly in real space and not intermediated by time. In this case, the 
phase 𝜙 is related with the reduced action SR (Goldstein et al., 2013) by means of 
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𝜙 = LM

ℏ
= O

ℏ
𝑝(𝑠)	𝑑𝑠 		→ 					𝜙 = 	R S T

ℏ
    (5) 

 
The arrow in (5) indicates a didactic adaptation where we use the mean values along the path 
to avoid the integral. Here L is the length of the path, ℏ  is the Plank constant h divided by 
2	𝜋, 𝑝 = 𝑚𝑣 = 2𝑚(𝐸 − 𝑉) is the non-relativistic momentum and the integral is along the 
path in coordinate space from initial point (i) to final point (f). Note that for our cases of 
interest the potential V=0.  

The Eq. (5) explicitly shows the relationship between phase and path length for the 
electrons (L) and the matter we will use here, which completes the rules (I-IV) and makes 
them operative.  

By means of these rules, one can explore the pattern of electron diffraction. In this 
case, we ask about the time independent probability that an electron emitted in the source with 
a fixed energy is detected in a specific place of the screen, assuming the condition of 
Frauenhofer. By combining (1) and (5) we obtain 

 
𝜙 = R	S

ℏ
𝑑 sin 𝜃    (6) 

 
which, together with Eq. (3) and Eq. (4) bring the relations among all relevant system 
variables. For didactic purposes, it may not be convenient to replace (6) in (4) directly, but 
proceed to a stepwise analysis, where the dependency on 𝜙 is first addressed (as was done in 
the previous section) and then the form in that 𝜙	depends on the geometry and magnitudes 
associated with the electron (5). In this exploration, the use of the geometric character of the 
sums is promoted, which reveals an emerging wave character for the electrons. For example, 
the condition of the first minimum previously analyzed 𝑁	𝜙 = 2𝜋 translates into  
 

(𝐷 + 𝑑) sin 𝜃 = Z
RS

    (7) 
 

where D = (N-1) d is the slit width. For 𝐷	 ≫ 𝑑	the Eq. (7) has a simple geometric 
interpretation. It means that when the direction 𝜃 is such that the difference of lengths 
between the paths at both ends of the slit maintains a certain relation a minimum in the curve 
of probability function occurs in that direction. This implies that the vectors associated with 
each of the N paths make a complete turn and are completely canceled as shown in the inset 
(c) of Figure 4. 

In addition, the right side of Eq. (7) reveals that this relation, which controls the 
position of the first minimum of the pattern depends only on the electron properties. This 
characteristic length is the De Broglie wavelength 

 
𝜆 = Z

R	S
     (8) 

 
which emerges naturally and not imposed as it is usually presented in elementary discussions 
of quantum mechanics. From a didactic perspective at high school level, it would not be so 
significant to identify with a name at this length but the role that mass and speed play in the 
pattern of diffraction. 

Another advantage of this approach is that it allows the students to make an analysis of 
the transition between quantum and classical behavior. This can be done by analyzing under 
which geometric conditions electron diffraction is possible, or by increasing the masses or 
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velocities in a fixed setup. In any case, it is always the interplay between the De Broglie 
wavelength involved and the slit size, which controls the diffraction pattern. In this time 
independent scheme, the shortest path emerges in the context of the Maupertuis’s least action 
principle for real space trajectories that conserve energy (Peskin and Schroeder, 2015). The 
treatment of the least action principle is not considered in detail in this proposal, but it could 
be addressed at basic levels of the University, where students are already familiar with the 
concept of classic action 

 
LIGHT DIFFRACTION 
The quantization of the electromagnetic field including its sources is a standard and 
sophisticated technique that describes the interaction of radiation and matter in the framework 
of quantum QED electrodynamics (Peskin and Schroeder, 2015). For didactic purposes, such 
machinery has no sense here. The quantum treatment that we consider adapts and simplifies 
the mathematics allowing to approach eventually all the optics from a quantum viewpoint. 
The first transformation consists on using the scalar wave equation for the electromagnetic 
field (Born and Wolf, 1999), which rules out effects such as polarization of light not relevant 
in this case. The second adaptation is to consider the time independent scalar field, which is 
represented by the Helmholtz equation, whose quantization via path integrals gives rise to a 
time independent path integral Sawant et al. (2014). In this framework, the calculation does 
not consider higher energy corrections (Peskin and Schroeder, 2015), which does not play a 
significant role in low energy quantum optics.  Under these conditions the phase 𝜙 (which 
complete rule III above) is given by, 
  

𝜙 = 𝑘(𝑠)	𝑑𝑠 → 𝑘 𝐿    (9) 
 
The Eq. (9), despite all the approaches involved, maintains two notable didactic 

aspects, simplicity and predictive power. Simplicity, since it synthesizes in a unique constant 
𝑘  both properties of the light, and the medium. In fact, in vacuum, the constant k depends 

only on the light and didactically it is enough to say that it takes certain value for each ‘color’ 
of light. 

On the other hand, the transition to the classical limit emerges naturally when k 
becomes very large. In this case, the only path that contributes is the shortest, recovering the 
Fermat principle of geometrical optics. Snell's law, where refraction index n(s) is encapsulated 
in k(s) is a direct consequence of this procedure. This transition plays a similar role that the 
emergence of the least action principle for matter mentioned above. The graphical methods to 
add up vectors considered in the previous sections are fully adequate to explore this limiting 
case. 

The diffraction effects arise in our model by means of the superposition of classical 
paths through the same mathematics and geometric construction as in the case of electrons. 
The whole analysis of previous sections can be here directly applied in the context of light. 
The Equations (4) -(5) -(6) and (9) encapsulates the physics of quantum light diffraction. 
 
DISCUSSION AND CONCLUSIONS 
In this work, we have analyzed the matter and light diffraction from a unified quantum 
viewpoint. To this end, we have employed a time independent adaptation of the Feynman’s 
path integrals formulation, which is accessible to high school students and involves only basic 
operations with vectors.  
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The application to diffraction offers the possibility to explore the singular probabilistic 
character of quantum mechanics, as well as other aspects such as superposition of “classical” 
real space paths, and the role Plank’s constant.  

Although the mathematics developed here has much in common with the textbook 
treatment of wave diffraction (Born and Wolf, 1999) the focus and the physical interpretation 
is very different. On the one hand, the traditional treatment of the subject is from a classical 
point of view, i.e. the analysis focusses on intensity (and not probability) distributions. In 
addition, the wavelength concept plays a significant prior role in this type of discussions. 
Finally, they are mainly restricted to the wave optics. On the contrary, we propose a quantum 
treatment from the beginning, as indicated by the quantum rules (I-IV). Furthermore, the 
quantum approach is non-traditional, in the sense that quantum arguments usually begin by 
introducing the particle wave duality by means of the De Broglie wavelength. Here, there is 
no wavelength introduced a priori, but the wave properties naturally emerge from the 
treatment. In fact, there is no mention of any wave, particle or ‘duality’ character in the 
approach.  

Not only is the language in the classical and quantum context different, but there are 
aspects that quantum treatment can describe, which are impossible in a classical wave context. 
The most evident is the formation of the diffraction pattern as a product of localized events on 
the screen. A classical wave model cannot account for this process, whereas the probabilistic 
character of the quantum model describes this naturally.  

Another aspect without classical counterpart is the role of non-classical paths in the 
pattern formation. In our treatment, the superposition of classical paths is ‘sufficient’ to 
account for the diffraction, which is very satisfactory from a didactic point of view. However, 
the all paths addition prescription leads to quantum corrections to classical Fresnel theory, due 
to non-classical contributions, for example paths that pass several times through one or 
several slits (Sawant et al., 2014). Beyond the quantitative value of these corrections, the 
exploration of non-classical paths interference may have didactic value. Strategies of this kind 
could help to disrupt the natural tendency of students to think that these paths are followed by 
electrons, instead of a calculation procedure to obtain a probability. 

Based on the didactic transposition presented here we are developing a didactic 
sequence to teach diffraction from a quantum and unified viewpoint. The sequence is 
organized in a series of situations in the form of questions and visual representations that 
promote the emergence of the basic inherent concepts. For this, we use graphics software 
tools and spreadsheets, which enhance the geometric character of the Feynman method. 
Subsequently the sequence will be tested and implemented in actual high school courses. The 
long-term goal is to generate a didactic product adaptable to different educational levels and 
contexts and that can be integrated with other didactic sequences that we have developed. 

Finally, we would like to mention that the quantum approach to diffraction considered 
here is a natural playground to teach the uncertainty principle. This non-traditional 
approximation to the subject via path integrals is a promising didactic route, which bypasses 
the usual quantum wave-mechanics approach, and clearly deserves further investigation. 
 
REFERENCES 
Bach, R., Pope, D., Liou, S.H. and Batelaan, H. (2013) Controlled double-slit electron 

diffraction. New Journal of Physics, 15 (33018).  
Beau, M. (2012). Feynman path integral approach to electron diffraction for one and two slits: 

analytical results. Eur. J. Phys. 33 (1023).  
Born, M. and Wolf, E. (1999). Principles of Optics. Cambridge: Cambridge University Press. 



  European J of Physics Education   Volume 8 Issue 2   1309-7202                              Arlego & Fanaro 

	
	

25 

Chevallard, Y. (1985). La transposition didactique. Du savoir savant au savoir enseigne. 
Grenoble: La Pense´e Sauvage Edition.  

Colin, P. and Viennot, L. (2001) Using two models in optics: Students’ difficulties and 
suggestions for teaching Am. J. Phys., 69 (36).   

Dobson, K., Lawrence, I., and Britton, P. (2006). The A to B of quantum physics. Physics 
Education, 35 (6).  

Fanaro M. and Otero M. R. (2008) Basics Quantum Mechanics teaching in Secondary School: 
One Conceptual Structure based on Paths Integrals Method Lat. Am. J. Phys. Educ. 2 
2 103-12  

Fanaro M.; Otero M. R. and Arlego M. (2009) Teaching the foundations of quantum 
mechanics in secondary school: a proposed conceptual structure Investigações em 
Ensino de Ciências 14 1 37-64  

Fanaro, M; Arlego, M y Otero, M. R (2012) A Didactic Proposed for Teaching the Concepts 
of Electrons and Light in Secondary School Using Feynman´s Path Sum Method. 
European Journal of Physics Education. Vol 3 Num 2. Pp 1-11  

Fanaro M.; Otero M. R. and Arlego M. (2012A) A proposal to teach the light at secondary 
school from the Feynman method. Problems of Education in the 21st Century 47 47 
27-39  

Fanaro M.; Otero M. R. and Arlego M. (2012B) Teaching Basic Quantum Mechanics in 
Secondary School Using Concepts of Feynman’s Path Integrals Method. The Physics 
Teacher 50 156-158  

Fanaro M.; Arlego M. and Otero M. R. (2014) The double slit experience with light from the 
point of view of Feynman's sum of multiple paths. Rev. Bras. Ensino Fís. 36 2 1-7  

Feynman, R. (1985). QED: The strange theory of light and matter. London: Penguin Books: 
Princeton. 

Feynman, R. and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. McGraw-Hill 
College: First Edition. 

Gitin A. (2013) Huygens–Feynman–Fresnel principle as the basis of applied optics Applied 
Optics 52 7419-34  

Goldstein, H., Poole, C., Safko, J. (2013). Classical Mechanics. Essex: Pearson. 
Halliday, D. Resnick, R. and Walker, J. (2011). Fundamentals of Physics. New Jersey: John 

Wiley & Sons.  
Hanc, J., Tuleja, S. and Hancova, M. (2003). Simple derivation of Newtonian mechanics from 

the principle of least action. American Journal of Physics, 71 (4), 386-391.  
Malgieri, M., Onorato, P., and De Ambrosis, A. (2014). Teaching quantum physics by the 

sum over paths approach and GeoGebra simulations Eur. J. Phys. 35 (55024).  
Malgieri M., Onorato P., and De Ambrosis, A. (2017). Test on the effectiveness of the sum 

over paths approach in favoring the construction of an integrated knowledge of 
quantum physics in high school Phys. Rev. Phys. Educ. Res. 13 (19901).  

Malgieri, M., Onorato, P., and De Ambrosis, A.  (2015). Insegnare la física quantistica a 
scuola: un percorso basato sul metodo dei cammini di Feynman. Giornale di Fisica, 
56 (145).  

Maurines, L. (2010). Geometrical Reasoning in Wave Situations: The case of light diffraction 
and coherent illumination optical imaging Int. J. of Science Education, 32: 1895–1926.  

Michelini, M., Stefanel A. (2008). Interpreting Diffraction Using the Quantum Model 
Proceedings GIREP Conference 2006: Modeling in Physics and Physics Education, 
Amsterdam: University of Amsterdam, 811-815. 

Ogborn, J., and Taylor, F. (2005). Quantum physics explains Newton's laws of motion. 
Physics Education 40: 26-34. 



  European J of Physics Education   Volume 8 Issue 2   1309-7202                              Arlego & Fanaro 

	
	

26 

Peskin, M., and Schroeder, V. (2015). An Introduction to Quantum Field Theory. Boulder: 
Westview Press. 

Ramil, A., Lopez A. J. and Vincitorio F. (2007) Improvements in the analysis of diffraction 
phenomena by means of digital images. Am. J. Phys. 75, 999.  

Sawant, R.; Samuel, J., Sinha, A., Sinha, S., and Sinha, U. (2014). Nonclassical Paths in 
Quantum Interference Experiments Phys. Rev. Lett. 113, 120406.  

Shankar, R. (1980). Quantum Mechanics. New York: Plenum Press. 
Styer, D. (2000). The Strange World of Quantum Mechanics. New York: Cambridge Univ. Pr. 
Taylor, E. F., Vokos, S., O’Meara, J.M., and Thornber, N. (1998). Teaching Feynman’s Sum 

Over Paths Quantum Theory, Computers in Physics (12), 190-99.  
Temes, J. B. (2003). Teaching Electromagnetic Waves to Electrical Engineering Students: An 

Abridged Approach. IEEE Transactions on Education (46), 283-88.  
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., and Ezawa, H. (1989). Demonstration of 

single-electron build-up of an interference pattern. Am. J. Phys. (57), 117–120.  
Wosilait, K., Heron, P., Shaffer, P., and  McDermott,  L. (1999). Addressing students’ 

difficulties in applying a wave model to the interference and diffraction of light. Am. J. 
Phys. (67), 5.  

Wua, X.Y., Zhang, B.J., Yang, J.H., Chia, L.X., Liua, X.J., Wua, Y.H., Wanga, Q.C., Wanga, 
Y., Lib, J.W., and Guoc, Y.Q. (2010). Quantum theory of light diffraction. Journal of 
Modern Optics, 57 (2020), 2082–2091. 

 


